Seguimiento de Objetos con Yolo v8 y BYTETrack – Object Tracking

En artículos anteriores, hablamos sobre la clasificación de imágenes y sobre cómo hacer detección de objetos en tiempo real gracias a Yolo. Esta vez hablaremos sobre “Seguimiento de objetos” (Object Tracking en inglés) en donde sumamos una nueva “capa” de inteligencia dentro del campo de Visión Artificial.

La Problemática del rastreo de objetos

Imaginemos que tenemos un cámara de seguridad en donde aplicamos un modelo de Machine Learning como Yolo que detecta coches en tiempo real. Agregamos un “rectángulo rojo” (ó caja) sobre cada automóvil que se mueve. Bien. Queremos contabilizar cuántos de esos vehículos aparecen en pantalla durante una hora; ¿cómo hacemos?. Hasta ahora, sabemos los coches que hay en cada frame del video. En el primer fotograma hemos detectado 3 coches. En el segundo cuadro tenemos 3 coches. ¿Son los mismos ó son coches distintos? ¿Qué ocurre cuando en el siguiente fotograma aparece un cuarto coche? ¿Cuántos coches sumamos? 3 + 3 + 4 ? Tendremos un mal recuento en el transcurso de una hora, si no aplicamos un algoritmo adecuado para el rastreo de vehículos.

Espero que con ese ejemplo empieces a comprender la problemática que se nos plantea al querer hacer object tracking. Pero no es sólo eso, además de poder identificar cada objeto en un cuadro y mantener su identidad a lo largo del tiempo, aparecen otros problemas “clásicos”: la oclusión del objeto la superposición y la transformación.

  • Oclusión: cuando un objeto que estamos rastreando queda oculto momentáneamente o parcialmente por quedar detrás de una columna, farola ú otro objeto.
  • Superposición de objetos: ocurre cuando tenemos a dos jugadores de fútbol con camiseta blanca y uno pasa por detrás de otro, entonces el algoritmo podría ser incapaz de entender cuál es cada uno.
  • Transformación del objeto: tenemos identificada a una persona que camina de frente con una camiseta roja y luego cambia de rumbo y su camiseta por detrás es azul. Es la misma persona pero que en el transcurso de su recorrido va cambiando sus “features”.
  • Efectos visuales: ocurre cuando al cristal de un coche le da el sol y genera un destello, lo cual dificulta su identificación. O podría ser que pase de una zona soleada a una con sombra generando una variación en sus colores.
Seguir Leyendo

Generación de Texto en Español con GPT-2

Crea tu propio bot-influencer, basado en Ibai Llanos, en Python ¿Qué puede salir mal?

Crearemos nuestra propia IA de generación de texto basada en los diálogos y entrevistas de Ibai Llanos publicados en Youtube. Usaremos un modelo pre-entrenado GPT-2 en castellano disponible desde HuggingFace y haremos el fine-tuning con Pytorch para que aprenda el estilo de escritura deseado.

En este artículo comentaremos brevemente el modelo GPT-2 y crearemos un entorno en Python desde donde poder entrenar y generar texto!

¿Qué son los modelos GPT?

GPT significa “Generative Pre-Training” y es un modelo de Machine Learning creado por OpenAI para la generación de texto. El modelo de Procesamiento del Lenguaje Natural, es un caso particular de Transformers. GPT propone el pre-entrenamiento de un enorme corpus de texto para luego -opcionalmente- realizar el fine-tuning.

Seguir Leyendo

Aprendizaje por Refuerzo

En este artículo aprenderemos qué es el aprendizaje por refuerzo, lo más novedoso y ambicioso a día de hoy en Inteligencia artificial, veremos cómo funciona, sus casos de uso y haremos un ejercicio práctico completo en Python: una máquina que aprenderá a jugar al pong sóla, sin conocer las reglas ni al entorno.

Nuestra Agenda

Los temas que veremos incluyen:

  • ¿Qué es el Reinforcement Learning?
    • Diferencias con los clásicos
    • Componentes
  • Casos de Uso
    • Y los videojuegos?
  • Cómo funciona el RL?
    • premios y castigos
    • fuerza bruta
  • Q-Learning
    • Ecuación de Bellman
    • Explorar vs Explotar
  • El juego del Pong en Python
    • Clase Agente
    • Clase Environment
    • El juego
    • La tabla de Políticas
  • Conclusiones
    • Recursos Adicionales

Comencemos!!

Seguir Leyendo

Detección de Objetos con Python

En este artículo podrás ver de manera práctica cómo crear tu propio detector de objetos que podrás utilizar con imagenes estáticas, video o cámara. Avanzaremos paso a paso en una Jupyter Notebook con el código completo usando redes neuronales profundas con Keras sobre Tensorflow.

Antes de empezar te recomiendo que leas mis artículos anteriores sobre Visión Artificial, que te ayudarán con las bases teóricas sobre las que nos apoyamos en este ejercicio:

Agenda

Tenemos mucho por delante! Antes que nada debo aclarar que próximamente un nuevo artículo explicará toda la teoría que hoy aplicaremos, pero mientras llega… pasemos a la acción!

  • ¿En qué consiste la Detección Yolo?
    • Algunos parámetros de la red
    • El proyecto propuesto
  • Lo que tienes que instalar (y todo el material)
  • Crear un dataset: Imágenes y Anotaciones
    • Recomendaciones para la imágenes
    • Anotarlo todo
    • El lego dataset
  • El código Python
    • Leer el dataset
    • Train y Validación
    • Data Augmentation
    • Crear la red YOLO
    • Crear la red de Detección
    • Generar las Anclas
    • Entrenar
    • Revisar los Resultados
    • Probar la red!
  • Conclusiones
  • Material Adicional

¿En qué consiste la detección YOLO?

Vamos a hacer un detector de objetos en imágenes utilizando YOLO, un tipo de técnica muy novedosa (2016), acrónimo de “You Only Look Once” y que es la más rápida del momento, permitiendo su uso en video en tiempo real.

Esta técnica utiliza un tipo de red Neuronal Convolucional llamada Darknet para la clasificacion de imágenes y le añade la parte de la detección, es decir un “cuadradito” con las posiciones x e y, alto y ancho del objeto encontrado.

La dificultad de esta tarea es enorme: poder localizar las áreas de las imágenes, que para una red neuronal es tan sólo una matriz de pixeles de colores, posicionar múltiples objetos y clasificarlos. YOLO lo hace todo “de una sola pasada” a su red convolucional. En resultados sobre el famoso COCO Dataset clasifica y detecta 80 clases de objetos distintos y etiquetar y posicionar hasta 1000 objetos (en 1 imagen!)

Seguir Leyendo

Detección de outliers en Python

En este nuevo artículo de Aprende Machine Learning explicaremos qué son los outliers y porqué son tan importantes, veremos un ejemplo práctico paso a paso en Python, visualizaciones en 1, 2 y 3 dimensiones y el uso de una librería de propósito general.

Puedes encontrar la Jupyter Notebook completa en GitHub.  

¿Qué son los Outliers?

Es interesante ver las traducciones de “outlier” -según su contexto- en inglés:

  • Atípico
  • Destacado
  • Excepcional
  • Anormal
  • Valor Extremo, Valor anómalo, valor aberrante!!

Eso nos da una idea, ¿no?

Seguir Leyendo

Sets de Entrenamiento, Test y Validación

Vamos a comentar las diferencias entre los conjuntos de Entrenamiento, Validación y Test utilizados en Machine Learning ya que suele haber bastante confusión en para qué es cada uno y cómo utilizarlos adecuadamente.

Intentaré hacerlo mediante un ejemplo práctico por eso de ser didácticos 🙂

Además veremos que tenemos distintas técnicas de hacer la validación del modelo y aplicarlas con Scikit Learn en Python.

Un nuevo Mundo

Al principio de los tiempos, sólo tenemos un conjunto Pangea que contiene todo nuestro dato disponible. Digamos que tenemos un archivo csv con 10.000 registros.

Para entrenar nuestro modelo de Machine Learning y poder saber si está funcionando bien, alguien dijo: Separemos el conjunto de datos inicial en 2: conjunto de entrenamiento (train) y conjunto de Pruebas (test). Por lo general se divide haciendo “80-20”. Y se toman muestras aleatorias -no en secuencia, si no, mezclado.

Para hacer el ejemplo sencillo, supongamos que queremos hacer clasificación usando un algoritmo supervisado, con lo cual tendremos:

  • X_train con 8.000 registros para entrenar
  • y_train con las “etiquetas” de los resultados esperados de X_train
  • X_test con 2.000 registros para test
  • y_test con las “etiquetas” de los resultados de X_test

Hágase el conjunto de Test

Lo interesante y a destacar de esto es que una vez los separamos en 8.000 registros para entrenar y 2.000 para probar, usaremos sólo esos 8.000 registros para alimentar al modelo al entrenarlo haciendo:

modelo.fit(X_train, y_train)

Luego de entrenar nuestro modelo y habiendo decidido como métrica de negocio el Accuracy (el % de aciertos) obtenemos un 75% sobre el set de entrenamiento (y asumimos que ese porcentaje nos sirve para nuestro objetivo de negocio).

Los 2.000 registros que separamos en X_test aún nunca han pasado por el modelo de ML. ¿Se entiende esto? porque eso es muy importante!!! Cuando usemos el set de test, haremos:

modelo.predict(X_test)

Como verás, no estamos usando fit()!!! sólo pasaremos los datos sin la columna de “y_test” que contiene las etiquetas. Además remarco que estamos haciendo predicción; me refiero a que el modelo NO se está entrenando ni <<incorporando conocimiento>>. El modelo se limita a “ver la entrada y escupir una salida”.

Cuando hacemos el predict() sobre el conjunto de test y obtenemos las predicciones, las podemos comprobar y contrastar con los valores reales almacenados en y_test y hallar así la métrica que usamos. Los resultados que nos puede dar serán:

  1. Si el accuracy en Test es <<cercano>> al de Entrenamiento (dijimos 75%) por ejemplo en este caso si estuviera entre 65 ú 85% quiere decir que nuestro modelo entrenado está generalizando bien y lo podemos dar por bueno (siempre y cuando estemos conformes con las métricas obtenidas).
  2. Si el Accuracy en Test es muy distinto al de Entrenamiento tanto por encima como por debajo, nos da un 99% ó un 25% (lejano al 75%) entonces es un indicador de que nuestro modelo no ha entrenado bien y no nos sirve. De hecho este podría ser un indicador de Overfitting.

Para evaluar mejor el segundo caso, es donde aparece el “conjunto de Validación”.

Al Séptimo día Dios creo el Cross-Validation

Seguir Leyendo