Prompt Engineering para Desarrolladores
Utiliza el poder de los LLMs como parte de tus Aplicaciones
Ahora que ya cuentas con tu LLM en Local, como explicamos en el artículo “Instala un LLM en Local”, podemos encenderlo en modo Servidor y comenzar a jugar con él desde nuestro código python.
En este artículo usaremos una Jupyter Notebook que puedes ver y descargar desde GitHub y realizar las actividades de Prompt Engineering.
Vamos a comenzar explicando los conceptos más importantes a la hora de pedir tareas a un Gran Modelo del Lenguaje y veremos como iterar sobre diversos casos de uso para mejorar el resultado final. Por último plantearemos el código para crear un Chatbot que guíe al cliente en sus compras en un ecommerce.
Introducción
El término Prompt Engineer surgió cuando los primeros Grandes Modelos de Lenguaje cómo (GPT-2 en 2019, GPT-3 en 2020) comenzaban a aparecer y encerrar en su interior los misterios del lenguaje humano. Entonces hacer prompt Engineer trataba de “encontrar de forma artística” la mejor forma de obtener buenas respuestas de estos modelos. De hecho, la técnica muchas veces consistía en hackear al modelo, descubrir vulnerabilidades y fortalezas. De las diversas y a veces aleatorias fórmulas utilizadas por los usuarios de la comunidad, el Prompt Engineer gana fuerza como una tarea en sí misma (y no como un complemento) en donde el saber cómo realizar la petición al modelo tenía salidas precisas y concretas.
Los actuales grandes modelos (de 2024) tienen “billones” de parámetros y si bien tenemos algo más de comprensión sobre su comportamiento -sabemos que son modelos estadísticos- lo cierto es que aún no tenemos un mapa completo de cómo se comportan. Esto da lugar a que el Prompt Engineering (“cómo consultamos el LLM”) siga siendo una parte importante de nuestra tarea como científicos de datos o Ingenieros de datos.
Lo cierto es que ahora un LLM puede ser una pieza más del sistema, por lo que debemos poder fiarnos de que tendremos la respuesta apropiada (y en el formato buscado).
Modelo Fundacional vs Modelo de Instrucciones
Hagamos un mini repaso antes de empezar; hay dos tipos de LLMS, los “LLM Base” (fundacional) y los “LLM tuneados con Instrucciones” (en inglés Instruction Tuned LLM). Los primeros entrenados únicamente para predecir la siguiente palabra. Los tuneados en Instrucciones están entrenados sobre los Base; pero pueden seguir indicaciones, eso los vuelve mucho más útiles para poder llevar adelante una conversación. Además, al agregar el RLHF, es decir, un paso adicional luego de Tunearlos en donde mediante el feedback de personas humanas se mejora la redacción de respuestas penalizando o premiando al modelo. El RLHF también funciona como una capa de censura para ciertas palabras o frases no deseadas.
Estas LLMs que siguen instrucciones son ajustadas con el objetivo de ser “utiles, honestas e inofensivas” (en inglés Helpful, Honest, Harmless) intentan ser lo menos tóxicas posibles. De ahí la importancia de la limpieza del dataset inicial con el que fueron entrenadas las “LLM base”.
Ten esto en cuenta cuando descargues o elijas qué LLM utilizar. Para la mayoría de aplicaciones deberás seleccionar una version de LLM que sea de Instrucciones y no base. Por ejemplo para modelos Llama 2 encontrarás versiones “raw” o base, pero generalmente queremos utilizar las tuneadas en instrucciones. A veces se les denomina como “versión chat”.
Las dos reglas para lograr buenos Prompts
¿Qué es lo que tienes que hacer para lograr buenas respuestas con tu LLM?
Veamos los dos principios básicos:
Seguir Leyendo