Aprendizaje por Refuerzo

En este artículo aprenderemos qué es el aprendizaje por refuerzo, lo más novedoso y ambicioso a día de hoy en Inteligencia artificial, veremos cómo funciona, sus casos de uso y haremos un ejercicio práctico completo en Python: una máquina que aprenderá a jugar al pong sóla, sin conocer las reglas ni al entorno.

Nuestra Agenda

Los temas que veremos incluyen:

  • ¿Qué es el Reinforcement Learning?
    • Diferencias con los clásicos
    • Componentes
  • Casos de Uso
    • Y los videojuegos?
  • Cómo funciona el RL?
    • premios y castigos
    • fuerza bruta
  • Q-Learning
    • Ecuación de Bellman
    • Explorar vs Explotar
  • El juego del Pong en Python
    • Clase Agente
    • Clase Environment
    • El juego
    • La tabla de Políticas
  • Conclusiones
    • Recursos Adicionales

Comencemos!!

Read More

Sistemas de Recomendación

Crea en Python un motor de recomendación con Collaborative Filtering

Una de las herramientas más conocidas y utilizadas que aportó el Machine Learning fueron los sistemas de Recomendación. Son tan efectivas que estamos invadidos todos los días por recomendaciones, sugerencias y “productos relacionados” aconsejados por distintas apps y webs.

Sin dudas, los casos más conocidos de uso de esta tecnología son Netflix acertando en recomendar series y películas, Spotify sugiriendo canciones y artistas ó Amazon ofreciendo productos de venta cruzada <<sospechosamente>> muy tentadores para cada usuario.

Pero también Google nos sugiere búsquedas relacionadas, Android aplicaciones en su tienda y Facebook amistades. O las típicas “lecturas relacionadas” en los blogs y periódicos.

Todo E-Comerce que se precie de serlo debe utilizar esta herramienta y si no lo hace… estará perdiendo una ventaja competitiva para potenciar sus ventas.

¿Qué son los Sistemas ó Motores de Recomendación?

Read More

Random Forest, el poder del Ensamble

Si ya leíste el algoritmo de árbol de Decisión con Aprendizaje Automático, tu próximo paso es el de estudiar Random Forest. Comprende qué és y cómo funciona con un ejemplo práctico en Python. Podrás descargar el código de ejemplo en una Jupyter Notebook -como siempre-.

Random Forest es un tipo de Ensamble en Machine Learning en donde combinaremos diversos árboles -ya veremos cómo y con qué características- y la salida de cada uno se contará como “un voto” y la opción más votada será la respuesta del <<Bosque Aleatorio>>.

Random Forest, al igual que el árbol e decisión, es un modelo de aprendizaje supervisado para clasificación (aunque también puede usarse para problemas de regresión).

¿Cómo surge Random Forest?

Uno de los problemas que aparecía con la creación de un árbol de decisión es que si le damos la profundidad suficiente, el árbol tiende a “memorizar” las soluciones en vez de generalizar el aprendizaje. Es decir, a padecer de overfitting. La solución para evitar esto es la de crear muchos árboles y que trabajen en conjunto. Veamos cómo.

Cómo funciona Random Forest?

Random Forest funciona así:

Read More

Clasificación con datos desbalanceados

Contrarrestar problemas con clases desbalanceadas

Estrategias para resolver desequilibrio de datos en Python con la librería imbalanced-learn.

Tabla de contenidos:

  1. ¿Qué son las clases desequilibradas en un dataset?
  2. Métricas y Confusión Matrix
  3. Ejercicio con Python
  4. Estrategias
  5. Modelo sin modificar
  6. Penalización para compensar / Métricas
  7. Resampling y Muestras sintéticas
    1. subsampling
    2. oversamplig
    3. combinación
  8. Balanced Ensemble

Empecemos!

Read More

Ejemplo Web Scraping en Python: IBEX35® la Bolsa de Madrid

En este artículo aprenderemos a utilizar la librería BeatifulSoap de Python para obtener contenidos de páginas webs de manera automática.

En internet encontramos de todo: artículos, noticias, estadísticas e información útil (¿e inútil?), pero ¿cómo la extraemos? No siempre se encuentra en forma de descarga ó puede haber información repartida en multiples dominios, ó puede que necesitemos información histórica, de webs que cambian con el tiempo.

Para poder generar nuestros propios archivos con los datos que nos interesan y de manera automática es que utilizaremos la técnica de WebScraping.

Contenidos:

  • Requerimientos para WebScraping
  • Lo básico de HTML y CSS que debes saber
  • Inspeccionar manualmente una página web
  • Al código! Obtener el valor actual del IBEX35® de la Bolsa de Madrid
  • Exportar a archivo csv (y poder abrir en Excel)
  • Otros casos frecuentes de “rascar la web”

Puedes ver y descargar el código python completo de este artículo desde GitHub haciendo click aquí

Read More

NLP: Analizamos los cuentos de Hernan Casciari

Ejercicio Python de Procesamiento del Lenguaje Natural

( ó “¿Qué tiene Casciari en la cabeza?” )

Ejercicio Procesamiento del Lenguaje Natural

Luego de haber escrito sobre la teoría de iniciación al NLP en el artículo anterior llega la hora de hacer algunos ejercicios prácticos en código Python para adentrarnos en este mundo.

Como la idea es hacer Aprendizaje Automático en Español, se me ocurrió buscar textos en castellano y recordé a Hernan Casciari que tiene los cuentos de su blog disponibles online y me pareció un buen desafío.

Para quien no conozca a Hernan Casciari, es un escritor genial, hace cuentos muy entretenidos, de humor (y drama) muy reales, relacionados con su vida, infancia, relaciones familiares con toques de ficción. Vivió en España durante más de una década y tuvo allí a su primera hija. En 2005 fue premiado como “El mejor blog del mundo” por Deutsche Welle de Alemania. En 2008 Antonio Gasalla tomó su obra “Más respeto que soy tu madre” y la llevó al teatro con muchísimo éxito. Escribió columnas para importantes periódicos de España y Argentina hasta que fundó su propia editorial Orsai en 2010 donde no depende de terceros para comercializar ni distribuir sus productos y siempre ofrece versione en pdf (gratuitos). Tiene 7 libros publicados, apariciones en radio (Vorterix y Perros de la Calle) y hasta llevó sus historias a una genial puesta en escena llamada “Obra en Construcción” que giró por muchas provincias de la Argentina, España y Uruguay.

Línea del Tiempo, vida blogger de Hernan Casciari

Agenda del Día: “NLP tradicional”

Lo cierto es que utilizaremos la librería python NLTK para NLP y haremos uso de varias funciones y análisis tradicionales, me refiero a que sin meternos – aún- en Deep Learning (eso lo dejaremos para otro futuro artículo).

  1. Obtener los Datos (los cuentos)
  2. Exploración Inicial
  3. Limpieza de datos
  4. Análisis Exploratorio
  5. Análisis de Sentimiento
  6. Modelado de Tópicos

Vamos al código!

Read More