Crea imágenes increíbles con Inteligencia Artificial en tu ordenador

El modelo de Machine Learning llamado Stable Diffusion es Open Source y permite generar cualquier imagen a partir de un texto, por más loca que sea, desde el sofá de tu casa!

Estamos viviendo unos días realmente emocionantes en el campo de la inteligencia artificial, en apenas meses, hemos pasado de tener modelos enormes y de pago en manos de unas pocas corporaciones a poder desplegar un modelo en tu propio ordenador y lograr los mismos -increíbles- resultados de manera gratuita. Es decir, ahora mismo, está al alcance de prácticamente cualquier persona la capacidad de utilizar esta potentísima herramienta y crear imágenes en segundos (ó minutos) y a coste cero.

En este artículo les comentaré qué es Stable Diffusion y por qué es un hito en la historia de la Inteligencia Artificial, veremos cómo funciona y tienes la oportunidad de probarlo en la nube o de instalarlo en tu propio ordenador sea Windows, Linux ó Mac, con o sin placa GPU.

Reseña de los acontecimientos

  • 2015: Paper que propone los Diffusion Models.
  • 2018 -2019 Text to Image Synthesis – usando GANS se generan imágenes de 64×64 pixels, utiliza muchos recursos y baja calidad de resultados.
  • Enero 2021: Open AI anuncia Dall-E, genera imágenes interesantes, pequeñas, baja resolución, lentas.
  • Febrero 2021: CLIP de Open AI (Contrastive Language-Image Pretraining), un codificador dual de lenguaje-imagen muy potente.
  • Julio 2021: Image Text Contrastive Learning Mejora sobre las Gans “image-text-label” space.
  • Marzo 2022: GLIDE: esta red es una mejora sobre Dall-E, tambien de openAI pero usando DIFFUSION model.
  • Abril 2022: Dall-E 2 de Open AI, un modelo muy bueno de generación de imágenes. Código cerrado, acceso por pedido y de pago.
  • Mayo 2022: Imagen de Google.
  • Agosto de 2022: Lanzamiento de Stable Diffusion 1.4 de Stability AI al público. Open Source, de bajos recursos, para poder ejecutar en cualquier ordenador.

¿Qué es Stable Diffusion?

Stable Diffusion es el nombre de un nuevo modelo de Machine Learning de Texto-a-Imagen creado por Stability Ai, Comp Vis y LAION. Entrenado con +5 mil millones de imágenes del dataset Laion-5B en tamaño 512 por 512 pixeles. Su código fue liberado al público el 22 de Agosto de 2022 y en un archivo de 4GB con los pesos entrenados de una red neuronal que podemos descargar desde HuggingFace, tienes el poder de crear imágenes muy diversas a partir de una entrada de texto.

Stable Diffusion es también una gran revolución en nuestra sociedad porque trae consigo diversas polémicas; al ofrecer esta herramienta a un amplio público, permite generar imágenes de fantasía de paisajes, personas, productos… ¿cómo afecta esto a los derechos de autor? Qué pasa con las imágenes inadecuadas u ofensivas? Qué pasa con el sesgo de género? Puede suplantar a un diseñador gráfico? Hay un abanico enorme de incógnitas sobre cómo será utilizada esta herramienta y la disrupción que supone. A mí personalmente me impresiona por el progreso tecnológico, por lo potente que es, los magnificos resultados que puede alcanzar y todo lo positivo que puede acarrear.

¿Por qué tanto revuelo? ¿Es como una gran Base de datos de imágenes? – ¡No!

Es cierto que fue entrenada con más de 5 mil millones de imágenes. Entonces podemos pensar: “Si el modelo vio 100.000 imágenes de caballos, aprenderá a dibujar caballos. Si vio 100.000 imágenes de la luna, sabrá pintar la luna. Y si aprendió de miles de imágenes de astronautas, sabrá pintar astronautas“. Pero si le pedimos que pinte “un astronauta a caballo en la luna” ¿qué pasa? La respuesta es que el modelo que jamás había visto una imagen así, es capaz de generar cientos de variantes de imágenes que cumplen con lo solicitado… esto ya empieza a ser increíble. Podemos pensar: “Bueno, estará haciendo un collage, usando un caballo que ya vio, un astronauta (que ya vió) y la luna y hacer una composición“. Y no; no es eso lo que hace, ahí se vuelve interesante: el modelo de ML parte de un “lienzo en blanco” (en realidad es una imagen llena de ruido) y a partir de ellos empieza a generar la imagen, iterando y refinando su objetivo, pero trabajando a nivel de pixel (por lo cual no está haciendo copy-paste). Si creyéramos que es una gran base de datos, les aseguro que no caben las 5.500.000.000 de imágenes en 4 Gygabytes -que son los pesos del modelo de la red- pues estaría almacenando cada imagen (de 512x512px) en menos de 1 Byte, algo imposible.

¿Cómo funciona Stable Diffusion?

Veamos cómo funciona Stable Diffusion!

Seguir Leyendo

Aprendizaje por Refuerzo

En este artículo aprenderemos qué es el aprendizaje por refuerzo, lo más novedoso y ambicioso a día de hoy en Inteligencia artificial, veremos cómo funciona, sus casos de uso y haremos un ejercicio práctico completo en Python: una máquina que aprenderá a jugar al pong sóla, sin conocer las reglas ni al entorno.

Nuestra Agenda

Los temas que veremos incluyen:

  • ¿Qué es el Reinforcement Learning?
    • Diferencias con los clásicos
    • Componentes
  • Casos de Uso
    • Y los videojuegos?
  • Cómo funciona el RL?
    • premios y castigos
    • fuerza bruta
  • Q-Learning
    • Ecuación de Bellman
    • Explorar vs Explotar
  • El juego del Pong en Python
    • Clase Agente
    • Clase Environment
    • El juego
    • La tabla de Políticas
  • Conclusiones
    • Recursos Adicionales

Comencemos!!

Seguir Leyendo

Random Forest, el poder del Ensamble

Si ya leíste el algoritmo de árbol de Decisión con Aprendizaje Automático, tu próximo paso es el de estudiar Random Forest. Comprende qué és y cómo funciona con un ejemplo práctico en Python. Podrás descargar el código de ejemplo en una Jupyter Notebook -como siempre-.

Random Forest es un tipo de Ensamble en Machine Learning en donde combinaremos diversos árboles -ya veremos cómo y con qué características- y la salida de cada uno se contará como “un voto” y la opción más votada será la respuesta del <<Bosque Aleatorio>>.

Random Forest, al igual que el árbol e decisión, es un modelo de aprendizaje supervisado para clasificación (aunque también puede usarse para problemas de regresión).

¿Cómo surge Random Forest?

Uno de los problemas que aparecía con la creación de un árbol de decisión es que si le damos la profundidad suficiente, el árbol tiende a “memorizar” las soluciones en vez de generalizar el aprendizaje. Es decir, a padecer de overfitting. La solución para evitar esto es la de crear muchos árboles y que trabajen en conjunto. Veamos cómo.

Cómo funciona Random Forest?

Random Forest funciona así:

Seguir Leyendo

Interpretación de Modelos de Machine Learning

Descifrar las decisiones tomadas por la máquina

La interpretación de las decisiones tomadas por nuestros algoritmos de Machine Learning pasa a un plano muy importante: para comprender el modelo y mejorarlo, evitar “biases” (ó descubrirlos), para justificar nuestra confianza en el modelo y hasta legalmente pues es requerido por leyes como la GDPR -para decisiones delicadas como puede ser dar ó no un crédito a una persona-.

Si nuestro algoritmo tuviera que detectar enfermedades y suponiendo que logramos una tasa de aciertos del 90% ¿no te parecería lógico comprender cómo lo ha hecho? ¿es puro azar? ¿está teniendo en cuenta combinaciones de características que nosotros no contemplamos?

Si de pequeño eras curioso y querías sabes cómo funcionaban las cosas: relojes, autos, ó hasta el mismísimo ordenador… serás un poco como yo… y… no siempre nos convence el concepto de “caja negra”.

Abriendo la Caja negra

Seguir Leyendo

¿Cómo funcionan las Convolutional Neural Networks? Visión por Ordenador

En este artículo intentaré explicar la teoría relativa a las Redes Neuronales Convolucionales (en inglés CNN) que son el algoritmo utilizado en Aprendizaje Automático para dar la capacidad de “ver” al ordenador. Gracias a esto, desde apenas 1998, podemos clasificar imágenes, detectar diversos tipos de tumores automáticamente, enseñar a conducir a los coches autónomos y un sinfín de otras aplicaciones.

El tema es bastante complejo/complicado e intentaré explicarlo lo más claro posible. En este artículo doy por sentado que tienes conocimientos básicos de cómo funciona una red neuronal artificial multicapa feedforward (fully connected). Si no es así te recomiendo que antes leas sobre ello:

¿Qúe es una CNN? ¿Cómo puede ver una red neuronal? ¿Cómo clasifica imagenes y distingue un perro de un gato?

La CNN es un tipo de Red Neuronal Artificial con aprendizaje supervisado que procesa sus capas imitando al cortex visual del ojo humano para identificar distintas características en las entradas que en definitiva hacen que pueda identificar objetos y “ver”. Para ello, la CNN contiene varias capas ocultas especializadas y con una jerarquía: esto quiere decir que las primeras capas pueden detectar lineas, curvas y se van especializando hasta llegar a capas más profundas que reconocen formas complejas como un rostro o la silueta de un animal.

Necesitaremos…

Recodemos que la red neuronal deberá aprender por sí sola a reconocer una diversidad de objetos dentro de imágenes y para ello necesitaremos una gran cantidad de imágenes -lease más de 10.000 imágenes de gatos, otras 10.000 de perros,…- para que la red pueda captar sus características únicas -de cada objeto- y a su vez, poder generalizarlo -esto es que pueda reconocer como gato tanto a un felino negro, uno blanco, un gato de frente, un gato de perfil, gato saltando, etc.-

Pixeles y neuronas

Seguir Leyendo

Comprende Principal Component Analysis

En este artículo veremos una herramienta muy importante para nuestro kit de Machine Learning y Data Science: PCA para Reducción de dimensiones. Como bonus-track veremos un ejemplo rápido-sencillo en Python usando Scikit-learn.

Introducción a PCA

Imaginemos que queremos predecir los precios de alquiler de vivienda del mercado. Al recopilar información de diversas fuentes tendremos en cuenta variables como tipo de vivienda, tamaño de vivienda, antigüedad, servicios, habitaciones, con/sin jardín, con/sin piscina, con/sin muebles  pero también podemos tener en cuenta la distancia al centro, si hay colegio en las cercanías, o supermercados, si es un entorno ruidoso, si tiene autopistas en las cercanías, la “seguridad del barrio”, si se aceptan mascotas, tiene wifi, tiene garaje, trastero… y seguir y seguir sumando variables.

Es posible que cuanta más (y mejor) información, obtengamos una predicción más acertada. Pero también empezaremos a notar que la ejecución de nuestro algoritmo seleccionado (regresión lineal, redes neuronales, etc.) empezará a tomar más y más tiempo y recursos. Es posible que algunas de las variables sean menos importantes y no aporten demasiado valor a la predicción. También podríamos acercarnos peligrosamente a causar overfitting al modelo.

¿No sería mejor tomar menos variables, pero más valiosas?

Seguir Leyendo