LLM: ¿Qué son los Grandes Modelos de Lenguaje?

Introducción a los LLM, en Inglés Large Language Model, que revolucionaron el campo del Procesamiento del Lenguaje Natural (NLP) crearon tendencia gracias a ChatGPT e incluso pusieron en cuestión la posibilidad de alcanzar el AGI, el punto de quiebre en el que la Inteligencia Artificial se vuelve autónoma y más poderosa que la inteligencia humana.

En este artículo vamos a comentar cómo surgen las LLMs, el cambio de paradigma, sus modelos actuales y cómo disrumpe en prácticamente todas las áreas laborales.

Definición de LLM

Los Grandes Modelos de Lenguaje son modelos de propósito general de Inteligencia Artificial desarrollados dentro del campo del Procesamiento del Lenguaje Natural que puede entender y generar texto al estilo humano.

Un LLM es un modelo estadístico que determina la probabilidad de ocurrencia de una secuencia de palabras en una oración.

Los modelos más famosos actuales “GPT” tienen una arquitectura basada en Transformers (2017) y usan redes neuronales que son entrenadas con inmensas cantidades de texto obtenidos y “curados” de internet, incluyendo libros, periódicos, foros, recetas, legales, paper científicos, patentes, enciclopedias.

Para darnos una idea de la inmensa cantidad de información que utiliza GPT-3, es el equivalente a que una persona leyera 120 palabras por minuto las 24 horas del día sin parar durante 9 mil años.

Seguir Leyendo

Generación de Texto en Español con GPT-2

Crea tu propio bot-influencer, basado en Ibai Llanos, en Python ¿Qué puede salir mal?

Crearemos nuestra propia IA de generación de texto basada en los diálogos y entrevistas de Ibai Llanos publicados en Youtube. Usaremos un modelo pre-entrenado GPT-2 en castellano disponible desde HuggingFace y haremos el fine-tuning con Pytorch para que aprenda el estilo de escritura deseado.

En este artículo comentaremos brevemente el modelo GPT-2 y crearemos un entorno en Python desde donde poder entrenar y generar texto!

¿Qué son los modelos GPT?

GPT significa “Generative Pre-Training” y es un modelo de Machine Learning creado por OpenAI para la generación de texto. El modelo de Procesamiento del Lenguaje Natural, es un caso particular de Transformers. GPT propone el pre-entrenamiento de un enorme corpus de texto para luego -opcionalmente- realizar el fine-tuning.

Seguir Leyendo
Aprende Transformers en Español

¿Cómo funcionan los Transformers? en Español

Imagen creada por el Autor utilizando el modelo de text-to-img StableDiffusion

Los Transformers aparecieron como una novedosa arquitectura de Deep Learning para NLP en un paper de 2017 “Attention is all you need” que presentaba unos ingeniosos métodos para poder realizar traducción de un idioma a otro superando a las redes seq-2-seq LSTM de aquel entonces. Pero lo que no sabíamos es que este “nuevo modelo” podría ser utilizado en más campos como el de Visión Artificial, Redes Generativas, Aprendizaje por Refuerzo, Time Series y en todos ellos batir todos los records! Su impacto es tan grande que se han transformado en la nueva piedra angular del Machine Learning.

En este artículo repasaremos las piezas fundamentales que componen al Transformer y cómo una a una colaboran para conseguir tan buenos resultados. Los Transformers y su mecanismo de atención posibilitaron la aparición de los grandes modelos generadores de texto GPT2, GPT3 y BERT que ahora podían ser entrenados aprovechando el paralelismo que se alcanza mediante el uso de GPUs.

Agenda

  • ¿Qué son los transformers?
  • Arquitectura
    • General
    • Embeddings
    • Positional Encoding
    • Encoder
      • Mecanismo de Atención
      • Add & Normalisation Layer
      • Feedforward Network
    • Decoder
    • Salida del Modelo
  • Aplicaciones de los Transformers
    • BERT
    • GPT-2
    • GPT-3
  • Resumen

¿Qué son los transformers en Machine Learning?

En el paper original de 2017 “Attention is all you need” aparece el diagrama con la novedosa arquitectura del Transformer, que todos deberíamos tatuarnos en un brazo. Esta arquitectura surge como una solución a problemas de aprendizaje supervisado en Procesamiento del Lenguaje Natural, obteniendo grandes ventajas frente a los modelos utilizados en ese entonces. El transformer permitía realizar la traducción de un idioma a otro con la gran ventaja de poder entrenar al modelo en paralelo; lo que aumentaba drásticamente la velocidad y reducción del coste; y utilizando como potenciador el mecanismo de atención, que hasta ese momento no había sido explotado del todo. Veremos que en su arquitectura utiliza diversas piezas ya existentes pero que no estaban combinadas de esta manera. Además el nombre de “Todo lo que necesitas es Atención” es a la vez un tributo a los Beatles y una “bofetada” a los modelos NLP centrados en Redes Recurrentes que en ese entonces estaban intentando combinarlos con atención. De esta sutil forma les estaban diciendo… “tiren esas redes recurrentes a la basura”, porque el mecanismo de atención NO es un complemento… es EL protagonista!

All you need is Love Attention

The Beatles
Seguir Leyendo

Crea imágenes increíbles con Inteligencia Artificial en tu ordenador

El modelo de Machine Learning llamado Stable Diffusion es Open Source y permite generar cualquier imagen a partir de un texto, por más loca que sea, desde el sofá de tu casa!

Estamos viviendo unos días realmente emocionantes en el campo de la inteligencia artificial, en apenas meses, hemos pasado de tener modelos enormes y de pago en manos de unas pocas corporaciones a poder desplegar un modelo en tu propio ordenador y lograr los mismos -increíbles- resultados de manera gratuita. Es decir, ahora mismo, está al alcance de prácticamente cualquier persona la capacidad de utilizar esta potentísima herramienta y crear imágenes en segundos (ó minutos) y a coste cero.

En este artículo les comentaré qué es Stable Diffusion y por qué es un hito en la historia de la Inteligencia Artificial, veremos cómo funciona y tienes la oportunidad de probarlo en la nube o de instalarlo en tu propio ordenador sea Windows, Linux ó Mac, con o sin placa GPU.

Reseña de los acontecimientos

  • 2015: Paper que propone los Diffusion Models.
  • 2018 -2019 Text to Image Synthesis – usando GANS se generan imágenes de 64×64 pixels, utiliza muchos recursos y baja calidad de resultados.
  • Enero 2021: Open AI anuncia Dall-E, genera imágenes interesantes, pequeñas, baja resolución, lentas.
  • Febrero 2021: CLIP de Open AI (Contrastive Language-Image Pretraining), un codificador dual de lenguaje-imagen muy potente.
  • Julio 2021: Image Text Contrastive Learning Mejora sobre las Gans “image-text-label” space.
  • Marzo 2022: GLIDE: esta red es una mejora sobre Dall-E, tambien de openAI pero usando DIFFUSION model.
  • Abril 2022: Dall-E 2 de Open AI, un modelo muy bueno de generación de imágenes. Código cerrado, acceso por pedido y de pago.
  • Mayo 2022: Imagen de Google.
  • Agosto de 2022: Lanzamiento de Stable Diffusion 1.4 de Stability AI al público. Open Source, de bajos recursos, para poder ejecutar en cualquier ordenador.

¿Qué es Stable Diffusion?

Stable Diffusion es el nombre de un nuevo modelo de Machine Learning de Texto-a-Imagen creado por Stability Ai, Comp Vis y LAION. Entrenado con +5 mil millones de imágenes del dataset Laion-5B en tamaño 512 por 512 pixeles. Su código fue liberado al público el 22 de Agosto de 2022 y en un archivo de 4GB con los pesos entrenados de una red neuronal que podemos descargar desde HuggingFace, tienes el poder de crear imágenes muy diversas a partir de una entrada de texto.

Stable Diffusion es también una gran revolución en nuestra sociedad porque trae consigo diversas polémicas; al ofrecer esta herramienta a un amplio público, permite generar imágenes de fantasía de paisajes, personas, productos… ¿cómo afecta esto a los derechos de autor? Qué pasa con las imágenes inadecuadas u ofensivas? Qué pasa con el sesgo de género? Puede suplantar a un diseñador gráfico? Hay un abanico enorme de incógnitas sobre cómo será utilizada esta herramienta y la disrupción que supone. A mí personalmente me impresiona por el progreso tecnológico, por lo potente que es, los magnificos resultados que puede alcanzar y todo lo positivo que puede acarrear.

¿Por qué tanto revuelo? ¿Es como una gran Base de datos de imágenes? – ¡No!

Es cierto que fue entrenada con más de 5 mil millones de imágenes. Entonces podemos pensar: “Si el modelo vio 100.000 imágenes de caballos, aprenderá a dibujar caballos. Si vio 100.000 imágenes de la luna, sabrá pintar la luna. Y si aprendió de miles de imágenes de astronautas, sabrá pintar astronautas“. Pero si le pedimos que pinte “un astronauta a caballo en la luna” ¿qué pasa? La respuesta es que el modelo que jamás había visto una imagen así, es capaz de generar cientos de variantes de imágenes que cumplen con lo solicitado… esto ya empieza a ser increíble. Podemos pensar: “Bueno, estará haciendo un collage, usando un caballo que ya vio, un astronauta (que ya vió) y la luna y hacer una composición“. Y no; no es eso lo que hace, ahí se vuelve interesante: el modelo de ML parte de un “lienzo en blanco” (en realidad es una imagen llena de ruido) y a partir de ellos empieza a generar la imagen, iterando y refinando su objetivo, pero trabajando a nivel de pixel (por lo cual no está haciendo copy-paste). Si creyéramos que es una gran base de datos, les aseguro que no caben las 5.500.000.000 de imágenes en 4 Gygabytes -que son los pesos del modelo de la red- pues estaría almacenando cada imagen (de 512x512px) en menos de 1 Byte, algo imposible.

¿Cómo funciona Stable Diffusion?

Veamos cómo funciona Stable Diffusion!

Seguir Leyendo

NLP: Analizamos los cuentos de Hernan Casciari

Ejercicio Python de Procesamiento del Lenguaje Natural

( ó “¿Qué tiene Casciari en la cabeza?” )

Ejercicio Procesamiento del Lenguaje Natural

Luego de haber escrito sobre la teoría de iniciación al NLP en el artículo anterior llega la hora de hacer algunos ejercicios prácticos en código Python para adentrarnos en este mundo.

Como la idea es hacer Aprendizaje Automático en Español, se me ocurrió buscar textos en castellano y recordé a Hernan Casciari que tiene los cuentos de su blog disponibles online y me pareció un buen desafío.

Para quien no conozca a Hernan Casciari, es un escritor genial, hace cuentos muy entretenidos, de humor (y drama) muy reales, relacionados con su vida, infancia, relaciones familiares con toques de ficción. Vivió en España durante más de una década y tuvo allí a su primera hija. En 2005 fue premiado como “El mejor blog del mundo” por Deutsche Welle de Alemania. En 2008 Antonio Gasalla tomó su obra “Más respeto que soy tu madre” y la llevó al teatro con muchísimo éxito. Escribió columnas para importantes periódicos de España y Argentina hasta que fundó su propia editorial Orsai en 2010 donde no depende de terceros para comercializar ni distribuir sus productos y siempre ofrece versione en pdf (gratuitos). Tiene 7 libros publicados, apariciones en radio (Vorterix y Perros de la Calle) y hasta llevó sus historias a una genial puesta en escena llamada “Obra en Construcción” que giró por muchas provincias de la Argentina, España y Uruguay.

Línea del Tiempo, vida blogger de Hernan Casciari

Agenda del Día: “NLP tradicional”

Lo cierto es que utilizaremos la librería python NLTK para NLP y haremos uso de varias funciones y análisis tradicionales, me refiero a que sin meternos – aún- en Deep Learning (eso lo dejaremos para otro futuro artículo).

  1. Obtener los Datos (los cuentos)
  2. Exploración Inicial
  3. Limpieza de datos
  4. Análisis Exploratorio
  5. Análisis de Sentimiento
  6. Modelado de Tópicos

Vamos al código!

Seguir Leyendo

Procesamiento del Lenguaje Natural (NLP)

¿Qué es Natural Language Processing?

El Procesamiento del Lenguaje Natural (NLP por sus siglas en inglés) es el campo de estudio que se enfoca en la comprensión mediante ordenador del lenguaje humano. Abarca parte de la Ciencia de Datos, Inteligencia Artificial (Aprendizaje Automático) y la lingüística.

En NLP las computadoras analizan el leguaje humano, lo interpretan y dan significado para que pueda ser utilizado de manera práctica. Usando NLP podemos hacer tareas como resumen automático de textos, traducción de idiomas, extracción de relaciones, Análisis de sentimiento, reconocimiento del habla y clasificación de artículos por temáticas.

El gran desafío

Seguir Leyendo