Principales Algoritmos usados en Machine Learning

En esta etapa de estudio sobre el Aprendizaje Automático me he topado con diversos algoritmos que voy reutilizando para la resolución de problemas y que se repiten con mayor frecuencia. Realizaré un listado con una breve descripción de los principales algoritmos utilizados en Machine Learning. Además cada uno contará con enlaces a ejemplos de desarrollo en código Python. Con el tiempo, agregaré mis propios ejemplos en español. También te recomiendo leer mi artículo sobre Deep Learning.

Empecemos!

Algoritmos de Regresión

Algoritmos de Regresión
Algoritmos de Regresión, Logístico o Lineal. Nos ayudan a clasificar o predecir valores. Se intentará compensar la mejor respuesta a partir del menor error.

Los algoritmos de Regresión modelan la relación entre distintas variables (features) utilizando una medida de error que se intentará minimizar en un proceso iterativo para poder realizar predicciones “lo más acertadas posible”. Se utilizan mucho en el análisis estadístico. El ejemplo clásico es la predicción de precios de Inmuebles a partir de sus características: cantidad de ambientes del piso, barrio, distancia al centro, metros cuadrados del piso, etc.
Los Algoritmos más usados de Regresión son:

Algoritmos basados en Instancia

Leer Artículo Completo

Curso de Machine Learning en Coursera: mi experiencia

Review curso online Aprendizaje de Máquina Coursera

Quería comentar mi experiencia durante el curso On Line de Coursera sobre Machine Learning de la Universidad de Standford impartido por Andrew Ng.

Mi opinión

En general debo decir que el curso me encantó, lo disfruté y me pareció muy completo para iniciarse en Machine Learning. Tiene una duración de 11 semanas y en cada una tendremos una serie de Videos, Lecturas, exámenes multiple-choice y ejercicios prácticos. Además cuenta con un foro y un grupo de ayudantes dispuestos a resolver nuestras dudas. Puedes seguir las clases desde tu computadora o móvil ya que cuenta con apps de iOs y Android que permiten streaming o descarga de los videos para ver off-line.

Atención: el curso está en inglés aunque cuenta con subtítulos de los videos al español.

Mi Cursada

Debo reconocer que me costó seguir la cursada semana a semana porque me tocaron navidades y vacaciones en Argentina entre medio. En vez de completarlo en 11 semanas, lo terminé en 16. Esto lo permite la plataforma migrando tu perfil a nuevas aperturas de curso y manteniendo tus logros. La parte matemática de vectores y operaciones con matrices la tenía un poco oxidada, pero una vez que agarras lápiz y papel, te pones en ritmo. Los foros son muy útiles, al ser uno de los primeros cursos que se crearon en Coursera, cuenta con un largo historial de más de 2 millones de estudiantes que pasaron por él y que aportaron muy buenas colaboraciones y comentarios. Los ejercicios en programación también me parecieron interesantes, algunos más complicados pero sin disparates. Y está bien implementado la forma de enviar tus trabajos y el seguimiento de tu estado en la plataforma. Recibes correos y notificaciones con recordatorios y hasta para levantar tu ánimo y no abandonar.

Para quién es

En mi parecer, está dirigido a programadores interesados en comenzar a comprender el Machine Learning. Es importante destacar que se debe tener conocimientos de Matemáticas ya que durante el curso se utilizan Derivadas e Integrales y sobre todo operaciones sobre Matrices. Si no eres bueno con las mates, o te dan flaca y/o repulsión… no te lo recomiendo.

Los contenidos

Leer Artículo Completo