Redes Neuronales | Aprende Machine Learning https://aprendemachinelearning.com en Español Tue, 22 Oct 2024 20:43:33 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 https://aprendemachinelearning.com/wp-content/uploads/2017/11/cropped-icon_red_neuronal-1-32x32.png Redes Neuronales | Aprende Machine Learning https://aprendemachinelearning.com 32 32 134671790 LLM: ¿Qué son los Grandes Modelos de Lenguaje? https://aprendemachinelearning.com/llm-que-son-los-grandes-modelos-de-lenguaje/ https://aprendemachinelearning.com/llm-que-son-los-grandes-modelos-de-lenguaje/#respond Fri, 15 Sep 2023 11:15:26 +0000 https://www.aprendemachinelearning.com/?p=8493 Introducción a los LLM, en Inglés Large Language Model, que revolucionaron el campo del Procesamiento del Lenguaje Natural (NLP) crearon tendencia gracias a ChatGPT e incluso pusieron en cuestión la posibilidad de alcanzar el AGI, el punto de quiebre en el que la Inteligencia Artificial se vuelve autónoma y más poderosa que la inteligencia humana.

The post LLM: ¿Qué son los Grandes Modelos de Lenguaje? first appeared on Aprende Machine Learning.

]]>

Introducción a los LLM, en Inglés Large Language Model, que revolucionaron el campo del Procesamiento del Lenguaje Natural (NLP) crearon tendencia gracias a ChatGPT e incluso pusieron en cuestión la posibilidad de alcanzar el AGI, el punto de quiebre en el que la Inteligencia Artificial se vuelve autónoma y más poderosa que la inteligencia humana.

En este artículo vamos a comentar cómo surgen las LLMs, el cambio de paradigma, sus modelos actuales y cómo disrumpe en prácticamente todas las áreas laborales.

Definición de LLM

Los Grandes Modelos de Lenguaje son modelos de propósito general de Inteligencia Artificial desarrollados dentro del campo del Procesamiento del Lenguaje Natural que puede entender y generar texto al estilo humano.

Un LLM es un modelo estadístico que determina la probabilidad de ocurrencia de una secuencia de palabras en una oración.

Los modelos más famosos actuales “GPT” tienen una arquitectura basada en Transformers (2017) y usan redes neuronales que son entrenadas con inmensas cantidades de texto obtenidos y “curados” de internet, incluyendo libros, periódicos, foros, recetas, legales, paper científicos, patentes, enciclopedias.

Para darnos una idea de la inmensa cantidad de información que utiliza GPT-3, es el equivalente a que una persona leyera 120 palabras por minuto las 24 horas del día sin parar durante 9 mil años.

Cambio de paradigma

Desde hace más de 50 años se vienen creando diversas arquitecturas de redes neuronales que van siendo refinadas y especializadas en tareas como las redes convolucionales para clasificación de imágenes, Redes Recurrentes para NLP, Redes para audio, redes profundas para ventas. Dentro del propio campo de NLP se entrenaban modelos de lenguaje para distintas tareas con datasets específicos, por ejemplo para “análisis de sentimiento” ó traducción de textos de inglés a español, resumen de noticias.

Cuando surge la arquitectura de Transformers en 2017, confluye una serie de buenas prácticas que facilitan el poder entrenar grandes cantidades de texto de manera no supervisada (next-word) utilizando el poder de procesamiento de las GPUS (en paralelo) con una buena relación de precio, tiempo y calidad en los resultados obtenidos.

Entonces, surge algo por sorpresa: un modelo del lenguaje que sólo era entrenado para traducir texto de inglés a francés era capaz de responder a preguntas como “¿cuál es la capital de Francia?” ó de realizar tareas como la de análisis de sentimiento o resumen de conceptos: todo ello en un mismo modelo!

A esas capacidades inesperadas que adquiere el modelo se le conocen como “zero-shot“. Además una vez que el modelo queda entrenado, se lo puede utilizar en diversidad de tareas y se puede seguir reutilizando haciendo un “fine-tuning” con pocos datos adicionales y seguir expandiendo sus capacidades.

Nuevo Artículo: Prompt Engineering con Python

¿Ser o no ser con Código?

Una curiosidad: Al crear los inmensos datasets para entrenar los LLMs se excluía deliberadamente los bloques de código (Python, java, javascript) como una manera de limpiar los datos. Sin embargo más tarde descubrieron que al incluir código, los modelos eran capaces de programar, pero también se volvían “más inteligentes” para realizar razonamientos lógicos.

¿Una SuperInteligencia?

Cuando OpenAI tuvo entrenado al modelo GPT-2 en 2019 lo vio tan potente que creyó que no era buena idea liberarlo por miedo al posible mal uso que se pudiera hacer de él.

Con GPT3 el modelo LLM ya era capaz de crear cuentos, poemas y noticias falsas que eran indistinguibles -apenas-de la escritura humana.

El modelo Bard(Lamda) de Google logró confundir a un ingeniero que trabajaba en su desarrollo para hacerle creer que tenia conciencia propia, que la IA era un “ser sintiente”. El test de Turing estaba definitivamente resulto.

A finales de 2022 OpenAI lanza ChatGPT que se viraliza en redes sociales haciendo que un producto de este tipo alcance la cantidad de un millón de usuarios en menos de una semana, algo comparable al crecimiento de adquisición de usuarios que logran las redes sociales más populares.

Entonces surgen montones de dudas: ¿Es realmente inteligente ChatGPT? Puede contestar preguntas de lo que sea? Puede saber más que un médico? Va a reemplazar mi trabajo? Puede convertirse en una tecnología peligrosa?

De hecho a principios de 2023 con la salida de GPT-4 dentro de ChatGPT un grupo de 1000 científicos de todo el mundo firmaron una petición para detener el desarrollo de este tipo de modelos de lenguaje durante 6 meses para estudiar si es responsable y beneficioso su uso libre o si por el contrario, estamos a tiempo de frenar esta tecnología que nos puede llevar al fin del mundo…

Si bien mantener una charla con este tipo de bots es sorprendente, los científicos reputados como Andrew Ng (deeplearning.ai) y Yann LeCun (Meta) mantienen la calma (y el escepticismo) dando un mensaje de que una IA que “sólo aprendió a predecir la próxima palabra” aún está lejos de convertirse en AGI y que de hecho, sufre de alucinaciones, no puede realizar cálculos matemáticos sencillos ni deducciones lógicas, está lejos de ser una herramienta peligrosa.

Modelos que siguen Instrucciones

Dentro del desarrollo de LLMs hay dos grandes tipos en los que los podemos subdividir; los modelos “base” (ó crudos) y los “Instruction Tuned LLM“. Los modelos Base son los modelos “generales” que están entrenados en predecir la siguiente palabra. Los modelos tuneados para seguir instrucciones son entrenados para seguir instrucciones a partir de un grupo de ejemplos; estos son los que permiten que tengamos diálogo mediante chats, como el propio ChatGPT.

Una analogía entre estos dos modelos, podría ser la de un médico clínico (conocimiento general) y un médico especialista. Si preguntamos al médico “base” sobre unos síntomas nos dará una respuesta general que puede ser buena, pero si la pregunta es específica para un área (ej. en cardiología) obtendremos mejor respuesta del médico especialista.

Los modelos de instrucciones son los que nos permiten hacer que el LLM pueda generar listas con resultados, o crear canciones, contestar preguntas con mayor precisión pero también prevenir dar malas respuestas ó inapropiadas (también llamadas tóxicas) que puede contener el modelo base (sin filtros). El modelo base podría contener información sobre cómo fabricar un químico peligroso, pero dentro del finetuning del modelo basado en instrucciones podríamos evitar que esa información aparezca en sus respuestas.

Los Instruction-models están entrenados para ser “Helpful-Honest-Harmless“, es decir que brinden ayuda, sean honestos e inocuos. Pero ¿cómo evaluamos al modelo de instrucciones? ¿cómo sabemos que podemos liberarlos al público sin peligro? Mediante el mecanismo de RLHF

EL RLHF, “un tipo en el Loop”

El Reinforcement Learning with Human Feedback es un paso adicional para mejorar al modelo. Para ello pasamos preguntas y las respuestas generadas por el LLM a un grupo de personas que evaluarán si la respuesta es de calidad ó si por el contrario incumple las normas. Esto retroaliementará mediante “premios ó castigos” al modelo, permitiendo reajustar sus parámetros gracias al Aprendizaje por refuerzo.

Es como si intentáramos dotar de una personalidad al modelo para que se “comporte” de una forma esperada y respetuosa.

Este paso adicional en donde necesitamos un grupo de personas es un coste adicional que sólo pueden permitirse grandes empresas. Lo interesante como Ingenieros o Científico de Datos es poder contar con un modelo que siga instrucciones que sea libre y poder ajustarlo a nuestro antojo.

Panorama LLMs 2023 y la llama que llama

Desde 2018 que empezaron a aparecer LLMs entrenadas por las grandes compañías IT, recordemos algunas de ellas, su aporte y los modelos recientes, a Septiembre de 2023.

LLM destacadas

Fecha, nombre, compañía, parámetros en “Billions”*, aporte

*NOTA, recuerda que el uso de “Billions” en inglés es distinto al valor Billón del español.

  • 2018 Octubre – BERT – Google – ? – Utiliza la Arquitectura Transformer sólo su rama encoder.
  • 2019 Julio – Roberta – Meta – 0.35B – versión multilenguaje optimizada de BERT.
  • 2019 Noviembre – GPT2 – OpenAI – 1.5B – Entrenado para predecir la Siguiente Palabra. Utiliza sólo decoder de la arquitectura de Transformers.
  • 2020 Mayo – GPT3– OpenAI – 175B – Alcanza un nivel de conversación al nivel humano. Puede generar textos, noticias o literatura fantástica sin problemas.
  • 2022 Enero – Lamda – Google – 137B – Modelo de lenguaje tuneado para chat y diálogos, priorizando ser agradable a los humanos.
  • 2022 Marzo – Chinchilla – DeepMind – 70B – Demostró que con un “presupuesto limitado” la mejor performance no se consigue con modelos enromes si no con modelos más pequeños entrenados con más datos.
  • 2022 Marzo – InstrucGPT – OpenAI – 175B – Entrenado con RLHF para seguir instrucciones
  • 2022 Abril – PALM – Google – 540B – Supera al hombre en muchas tareas del “bigbench” definidas como punto de referencia.
  • 2022 Octubre – FLANT5 – Google – 11B – Modelo basado en PALM para seguir instrucciones libre bajo licencia Apache 2.
  • 2022 Noviembre – BLOOMBigScience – Entrenado en 59 idiomas para uso libre.
  • 2023 Febrero – Llama – Meta – 13B/65B – “supera a GPT3 siendo 10 veces más pequeño”. Es libre pero no para uso comercial.
  • 2023 Marzo – GPT4 – OpenAI – ? – Se desconoce su tamaño, pero es el modelo más poderoso en la actualidad.
  • 2023 Mayo – Palm2 -Google – ? – “Tiene capacidades multi-lenguaje y de razonamiento más eficientes con menor cómputo”.
  • 2023 Mayo – FalconTII – 40B – “40 billones de parámetros entrenados en un trillón de tokens”.
  • 2023 Julio – LLAMA2 – META – 180B – Permite ser utilizado comercialmente!
  • 2023 Septiembre – Falcon – TII – 180B – Opensource! Supera a LLAMA2

Te enseño cómo instalar LLama2 u otro LLM en tu propio ordenador en minutos! lee este artículo “Cómo Instalar un Modelo de Lenguaje en Local”

Conclusión

Los Grandes Modelos de Lenguaje están apoderándose de toda la popularidad de la Inteligencia Artificial y lo tienen justificado; son realmente grandiosas en sus tareas y han logrado traer a la agenda de los organismos internacionales la importancia de regular este tipo de tecnologías, su importancia, riesgos e impacto que tendrá en nuestra sociedad (global), incluyendo el plano económico y laboral.

Las LLMS han pateado el tablero a las grandes compañías, creando una nueva carrera en IA, el propio Google vio amenazado su negocio como motor de búsqueda, Microsoft trazo alianzas estratégicas con OpenAI y reflotó a Bing agregando funciones de Chat con IA y dando acceso a LLMs desde su servicio en la nube Azure.

Las personas que están trabajando con esta tecnología creen que las LLMs se han convertido en compañeros indispensables para casi cualquier tareas, potenciando nuestras tareas, no para reemplazarnos si no para aumentarnos (en marketing, programación, toma de decisiones, investigación, escritura…)

En próximos artículos hablaré sobre instalar tu propio LLM en local, el prompt engineering, las librerías python que nos ayudan a implementar LLMs en local y en la nube y en cómo construir nuestros propios sistemas privados al estilo de ChatGPT.

Espero que hayas disfrutado del artículo!

The post LLM: ¿Qué son los Grandes Modelos de Lenguaje? first appeared on Aprende Machine Learning.

]]>
https://aprendemachinelearning.com/llm-que-son-los-grandes-modelos-de-lenguaje/feed/ 0 8493
Generación de Texto en Español con GPT-2 https://aprendemachinelearning.com/generacion-de-texto-en-espanol-con-gpt-2/ https://aprendemachinelearning.com/generacion-de-texto-en-espanol-con-gpt-2/#comments Tue, 13 Dec 2022 09:00:00 +0000 https://www.aprendemachinelearning.com/?p=7869 Crearemos nuestra propia IA de generación de texto basada en los diálogos y entrevistas de Ibai Llanos publicados en Youtube. Usaremos un modelo pre-entrenado GPT-2 en castellano disponible desde HuggingFace y haremos el fine-tuning con Pytorch para que aprenda el estilo de escritura deseado.

The post Generación de Texto en Español con GPT-2 first appeared on Aprende Machine Learning.

]]>
Crea tu propio bot-influencer, basado en Ibai Llanos, en Python ¿Qué puede salir mal?

Crearemos nuestra propia IA de generación de texto basada en los diálogos y entrevistas de Ibai Llanos publicados en Youtube. Usaremos un modelo pre-entrenado GPT-2 en castellano disponible desde HuggingFace y haremos el fine-tuning con Pytorch para que aprenda el estilo de escritura deseado.

En este artículo comentaremos brevemente el modelo GPT-2 y crearemos un entorno en Python desde donde poder entrenar y generar texto!

¿Qué son los modelos GPT?

GPT significa “Generative Pre-Training” y es un modelo de Machine Learning creado por OpenAI para la generación de texto. El modelo de Procesamiento del Lenguaje Natural, es un caso particular de Transformers. GPT propone el pre-entrenamiento de un enorme corpus de texto para luego -opcionalmente- realizar el fine-tuning.

El fine-tuning es el proceso de realizar un “ajuste fino” de los parámetros ó capas de la red neuronal, en nuestro caso con un dataset adicional para guiar al modelo a obtener las salidas deseadas.

¿Entonces es aprendizaje no supervisado? Sí; se considera que es aprendizaje no supervisado porque estamos pasando al modelo enormes cantidades de texto, que el modelo organizará automáticamente y le pedimos que “prediga la siguiente palabra” usando como contexto todos los tokens previos (con posicionamiento!). El modelo ajusta sin intervención humana los embeddings y los vectores de Atención. Algunos autores lo consideran aprendizaje “semi-supervisado” porque consideran como “etiqueta de salida” el token a predecir.

Ejemplo: Si tenemos la oración “Buenos días amigos”, el modelo usará “Buenos días” para predecir como etiqueta de salida “amigos”.

Este modelo puede usarse directamente como modelo generativo luego de la etapa de aprendizaje no supervisado (sin hacer fine-tuning).

Al partir de este modelo en crudo y realizar un fine-tuning a nuestro antojo, podemos crear distintos modelos específicos: de tipo Question/Answering, resumen de textos, clasificación, análisis de sentimiento, etc.

Eso es lo que haremos en el ejercicio de hoy: descargar el modelo GPT y realizar el fine-tuning!

¿Cómo es la arquitectura de GPT-2?

GPT es un modelo Transformer. Utiliza sólo la rama “Tansformer-Decoder” a diferencia de modelos como BERT que utilizan la rama Encoder. De esta manera se elimina la Atención cruzada, pues ya no es necesaria y mantiene la “Masked Self-Attention”.

 Entre sus características:

  • El Transformer Decoder utiliza Masked Self-Attention. Sólo utiliza los tokens precedentes de la oración para calcular la atención del token final.
  • GPT es un modelo con posicionamiento absoluto de embeddings.
  • GPT fue entrenado con “Causal Language Modelling” y es poderoso para predecir el “siguiente token” de la oración. Esto le permite generar texto coherente, imitando al lenguaje de los humanos.
  • GPT-2 fue entrenado con el texto de 8 millones de páginas web que acumulan más de 40GB.
  • GPT-2 tiene 1500 millones de parámetros en su versión Extra-Large.
  • El tamaño de vocabulario es de 50.257 tokens.
  • Existen 4 modelos de distinto tamaño de GPT-2 según la cantidad de decoders y la dimensionalidad máxima.
Desde la versión GPT-2 Small de unos 500MB (117Millones de parámetros) hasta el Extra large que ocupa más de 6.5GB.

Como vemos, la versión pequeña tiene un tamaño aún manejable para entrenar en un ordenador “normal”. Es la versión del modelo que utilizaremos en el ejercicio.

Zero shot Learning

Una ventaja que se consigue al entrenar al modelo con millones de textos de conocimiento general (en contraposición a utilizar textos sobre un sólo tema) es que el modelo consigue habilidades “zero shot”, es decir, logra realizar satisfactoriamente algunas tareas para las que no ha sido entrenado específicamente. Por ejemplo, GPT-2 puede traducir textos de inglés a francés sin haber sido entrenado para ello. También consigue responder a preguntas ó generar código en Java.

¿Por qué usar GPT-2?

Puede que sepas de la existencia de GPT-3 y hasta puede que hayas escuchado hablar sobre el recientemente lanzado “ChatGPT” que algunos denominan como GPT-3.5 ó GPT-4. Entonces, ¿porqué vamos a usar al viejo GPT-2 en este ejercicio?

La respuesta rápida es porque GPT-2 es libre!, su código fue liberado y tenemos acceso al repositorio y a su implementación desde HuggingFace. Existen muchos modelos libres tuneado de GPT-2 y publicados que podemos usar. Si bien cuenta con un tamaño de parámetros bastante grande, GPT-2 puede ser reentrenado en nuestro propio ordenador.

En cuanto a resultados, GPT-2 fue unos de los mejores de su época (Feb 2019), batiendo records y con valores -en algunos casos- similares a los del humano:

En cambio GPT-3 aún no ha sido liberado, ni su código ni su red pre-entrenada, además de que tiene un tamaño inmensamente mayor a su hermano pequeño, haciendo casi imposible que lo podamos instalar ó usar en nuestra computadora de casa ó trabajo.

Es cierto que puedes utilizar GPT-3 mediante la API de pago de OpenAI y también se puede utilizar ChatGPT de modo experimental desde su web. Te animo a que lo hagas, pero no dejes de aprender a utilizar GPT-2 que será de gran ayuda para comprender como ajustar uno de estos modelos de lenguaje para tus propios fines.

¿Qué tiene que ver HuggingFace en todo esto?

HuggingFace se ha convertido en el gran repositorio de referencia de modelos pre-entrenados. Es un sitio web en donde cualquier persona ó insitutición pueden subir sus modelos entrenados para compartirlos.

HuggingFace ofrece una librería python llamada transformers que permite descargar modelos preentrenados de NLP (GPT, BERT, BART,ELECTRA, …), utilizarlos, hacer el fine tuning, reentrenar.

En el ejercicio que haremos instalaremos la librería de HuggingFace para acceder a los modelos de GPT.

Modelo pre-entrenado en Español

Dentro de HuggingFace podemos buscar modelos para NLP y también para Visión Artificial, cómo el de Stable Diffusion, para crear imágenes, como se explica en un anterior post del blog!).

Y podemos encontrar Modelos con distintos fines. En nuestro caso, estamos interesados en utilizar un modelo en Español.

Usaremos el modelo llamado “flax-community/gpt-2-spanish“, puedes ver su ficha aquí, y desde ya, agradecemos enormemente al equipo que lo ha creado y compartido gratuitamente. Ocupa unos 500MB.

Un detalle, que verás en el código: realmente cargaremos una red pre-entrenada con los pesos y el embeddings PERO también usaremos el tokenizador! (es decir, cargaremos 2 elementos del repositorio de HuggingFace, no sólo el modelo).

El proyecto Python: “Tu propio bot influencer”

En otros artículos de NLP de este tipo, utilizan textos de Shakespeare porque es un escritor reconocido, respetado y porque no tiene derechos de autor. Nosotros utilizaremos textos de Ibai Llanos generados a partir de transcripciones generadas automáticamente por Whisper de sus videos de Youtube. Ibai es un reconocido Streamer español de Twitch. ¿Porqué Ibai? Para hacer divertido el ejercicio! Para que sea en castellano, con jerga actual 😀

El proyecto consiste en tomar un modelo GPT-2 pre-entrenado en castellano y realizar el fine-tuning con nuestro propio dataset de texto. Como resultado obtendremos un modelo que será capaz de crear textos “con la manera de hablar” de Ibai.

Aquí puedes encontrar la Jupyter notebook completa en mi repo de Github con el ejercicio que realizaremos. En total son unas 100 líneas de código.

El Dataset educacional: Diálogos de Ibai

Banner del Canal de Ibai en Youtube 2022

El dataset es una selección totalmente arbitraría de videos de Youtube de Ibai con entrevistas y charlas de sus streams en Twitch. En algunos videos juega videojuegos en vivo, entrevista cantantes, futbolistas ó realiza compras de productos usados que le llaman la atención.

Utilicé un notebook de Google Colab con Whisper que es un modelo de machine learning lanzado hace pocos meses (en 2022) que realiza la transcripción automática de Audio a Texto. Usaremos como entradas esos textos. Disclaimer: Pueden contener errores de mala transcripción y también es posible que hubiera palabras que el modelo no comprenda del español.

El archivo de texto que utilizaremos como Dataset con fines educativos, lo puedes encontrar aquí.

Creación del entorno Python con Anaconda

Si tienes instalado Anaconda, puedes crear un nuevo Environment python para este proyecto. Si no, instala anaconda siguiendo esta guía, ó utiliza cualquier manejador de ambientes python de tu agrado.

También puedes ejecutar el código una notebook en la nube con Google Colab y aprovechar el uso de GPU gratuito. En este artículo te cuento sobre cómo usar Colab.

En este ejercicio utilizaremos la librería Pytorch para entrenar la red neuronal. Te recomiendo ir a la web oficial de Pytorch para obtener la versión que necesitas en tu ordenador, porque puede variar la instalación si usas Windows, Linux ó Mac y si tienes o no GPU.

Ejecuta las siguientes líneas en tu terminal:

conda create -n gpt2 python=3.9 -y
# Activa el nuevo ambiente con: 'conda activate gpt2'
conda install numpy tqdm transformers -y
# si tienes GPU instala Pytorch con:
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
# si no tienes GPU, instala con:
conda install pytorch torchvision torchaudio cpuonly -c pytorch

Importamos las librerías

Ahora pasamos a un notebook o una IDE Python y empezamos importando las librerías python que utilizaremos, incluyendo transformers de HuggingFace:

import os
import time
import datetime
import numpy as np
import random
from tqdm import tqdm
import torch
from torch.utils.data import Dataset, DataLoader, random_split, RandomSampler
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import AdamW, get_linear_schedule_with_warmup

Uso de CPU ó GPU

Haremos una distinción; si vamos a utilizar GPU para entrenar ó CPU, definiendo una variable llamada device. Nótese que también alteramos el tamaño que usaremos de batch. En el caso de GPU, podemos utilizar valores 2 ó 3 según el tamaño de memoria RAM que tenga la tarjeta gráfica.

if torch.cuda.is_available():
    print("Usar GPU")
    device = torch.device("cuda")
    batch_size = 3
else:
    print("usar CPU")
    device = torch.device("cpu")
    batch_size = 1

Cargamos el Modelo de HuggingFace

La primera vez que ejecutemos esta celda, tomará unos minutos en descargar los 500MB del modelo y el tokenizador en Español desde HuggingFace, pero luego ya se utilizará esa copia desde el disco, siendo una ejecución inmediata.

Para este ejercicio estamos creando un “token especial” (de control) que llamaremos “ibai” con el que luego indicaremos al modelo que queremos obtener una salida de este tipo.

# Load the GPT tokenizer.
tokenizer = AutoTokenizer.from_pretrained("flax-community/gpt-2-spanish", bos_token='<|startoftext|>', eos_token='<|endoftext|>', pad_token='<|pad|>')
model = AutoModelForCausalLM.from_pretrained("flax-community/gpt-2-spanish")

control_code = "ibai"

special_tokens_dict = {
         "additional_special_tokens": ['f"<|{control_code}|>"'],
}
num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
unk_tok_emb = model.transformer.wte.weight.data[tokenizer.unk_token_id, :]
for i in range(num_added_toks):
        model.transformer.wte.weight.data[-(i+1), :] = unk_tok_emb

Cargamos el Dataset “Ibai_textos.txt”

Creamos una clase python que hereda de Dataset que recibe el archivo txt que contiene los textos para fine-tuning.

class GPT2Dataset(Dataset):
  def __init__(self, control_code, tokenizer, archivo_texto, max_length=768):
    self.tokenizer = tokenizer
    self.input_ids = []
    self.attn_masks = []
    print('loading text...')
    sentences = open(archivo_texto, 'r', encoding="utf-8").read().lower().split('n')
    print('qty:',len(sentences))
    for row in tqdm(sentences):
      encodings_dict = tokenizer('<|startoftext|>'+ f"<|{control_code}|>" + row + '<|endoftext|>', truncation=True, max_length=max_length, padding="max_length")
      self.input_ids.append(torch.tensor(encodings_dict['input_ids']))
      self.attn_masks.append(torch.tensor(encodings_dict['attention_mask']))
    
  def __len__(self):
    return len(self.input_ids)
  def __getitem__(self, idx):
    return self.input_ids[idx], self.attn_masks[idx]

Instanciamos la clase, pasando el nombre de archivo “ibai_textos.txt” a utilizar

dataset = GPT2Dataset(control_code, tokenizer, archivo_texto="ibai_textos.txt", max_length=768)
# Split into training and validation sets
train_size = int(0.99 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
print('{:>5,} training samples'.format(train_size))
print('{:>5,} validation samples'.format(val_size))
train_dataloader = DataLoader(
            train_dataset,  # The training samples.
            sampler = RandomSampler(train_dataset), # Select batches randomly
            batch_size = batch_size # Trains with this batch size.
        )

Entrenamos haciendo el Fine-Tuning

Realizando entre 1 y 3 epochs debería ser suficiente para que el modelo quede tuneado.

epochs = 1
learning_rate = 5e-4
warmup_steps = 1e2
epsilon = 1e-8
optimizer = AdamW(model.parameters(), lr = learning_rate, eps = epsilon)
total_steps = len(train_dataloader) * epochs
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps = warmup_steps, num_training_steps = total_steps)
def format_time(elapsed):
    return str(datetime.timedelta(seconds=int(round((elapsed)))))

Ahora si, a entrenar el modelo durante cerca de 2 horas si tenemos GPU ó durante un día entero en CPU.

El código es bastante estándar en PyTorch para entreno de redes neuronales profundas; un loop principal por epoch donde procesamos por batches las líneas de texto del dataset y hacemos backpropagation.

total_t0 = time.time()
model = model.to(device)
for epoch_i in range(0, epochs):
    print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))
    print('Training...')
    t0 = time.time()
    total_train_loss = 0
    model.train()
    for step, batch in enumerate(train_dataloader):
        b_input_ids = batch[0].to(device)
        b_labels = batch[0].to(device)
        b_masks = batch[1].to(device)
        model.zero_grad()
        outputs = model(  b_input_ids, labels=b_labels, 
                          attention_mask = b_masks, token_type_ids=None )
        loss = outputs[0]
        batch_loss = loss.item()
        total_train_loss += batch_loss
        # Get sample every x batches.
        if step % sample_every == 0 and not step == 0:
            elapsed = format_time(time.time() - t0)
            print('  Batch {:>5,}  of  {:>5,}. Loss: {:>5,}.   Elapsed: {:}.'.format(step, len(train_dataloader), batch_loss, elapsed))
        loss.backward()
        optimizer.step()
        scheduler.step()
    # Calculate the average loss over all of the batches.
    avg_train_loss = total_train_loss / len(train_dataloader)
    # Measure how long this epoch took.
    training_time = format_time(time.time() - t0)
    print("")
    print("  Average training loss: {0:.2f}".format(avg_train_loss))
    print("  Training epoch took: {:}".format(training_time))
    t0 = time.time()
    total_eval_loss = 0
    nb_eval_steps = 0
print("Training complete!")
print("Total training took {:} (h:mm:ss)".format(format_time(time.time()-total_t0)))

Guardar el modelo, para uso futuro

El tiempo de entreno varía según tu ordenador, memoria RAM y si tienes o no placa de video con GPU.

Luego de varias horas de entreno, mejor guardar el modelo para no tener que reentrenar cada vez y reutilizar el modelo que hicimos. Para guardar hacemos:

output_dir = './model_gpt_ibai/'
if not os.path.exists(output_dir):
    os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)

En la notebook con el ejercicio verás también una celda con el código de ejemplo para cargar tu modelo ya entrenado.

Crear Texto al estilo influencer

Generamos 3 salidas preguntando ¿Qué es el fútbol? con máximo de 300 caracteres. Puedes variar estos parámetros para obtener más párrafos y con un máximo de 764 letras.

Fijate que agregamos al prompt el token de control de inicio (startoftext) pero también nuestro token de control que llamamos “ibai”.

model.eval()
prompt = "<|startoftext|>" + "<|ibai|>" + "¿ qué es el fútbol ?"
generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0)
generated = generated.to(device)
sample_outputs = model.generate(
                                generated, 
                                num_return_sequences=3,
                                max_length = 300,
                                do_sample=True, 
                                top_k=50, 
                                top_p=0.95
                                )
for i, sample_output in enumerate(sample_outputs):
  print("{}: {}nn".format(i, tokenizer.decode(sample_output, skip_special_tokens=True)))

Y obtenemos como salidas:

  • <|ibai|>¿ qué es el fútbol? porque yo creo que son los mejores momentos de la vida del mundo. eh no se. eh y eso es lo que me llama la atención. eh ¡gracias! gracias.
  • <|ibai|>¿ qué es el fútbol? fútbol es la suma de sus defectos, del mal que uno puede poner en uno, de un mal que tú quieres que la gente haga como si nada, es decir, yo soy el contrario, yo soy el mejor, soy el peor. es decir, que tú eres el mejor y yo soy el peor. ¡joder, yo soy del mejor! ¡pero, bueno, ya está! ¿ tú eres el que está ahí para que me lo diga? ¿ me crees que estás bueno? no, no.
  • <|ibai|>¿ qué es el fútbol? para empezar, el que se mueve por el interés de los futbolistas es increíble. ¿ de quién eres? en el mejor sentido, y además de lo que eres. te he dicho que ya sé que a ti te gusta eso de hacer las cosas, pero eres muy, muy, muy, muy, muy, muy especial, ¿ no? un niño. te lo voy a decir un poco de corazón.

Ahora ya puedes jugar y probar tú mismo con distintas salidas!

Aquí te dejo algunos ejemplos divertidos que conseguí (pinto en negrita el comienzo del prompt enviado al modelo):

  • <|ibai|>para mi la vida es una cosa en la que te tienes que esforzar por lo que te gusta, porque quieres algo. cuando me pongo de acuerdo en algo me siento preparado para el momento. el ego que te llevas es la presión de no ser perfecto. y claro, si quieres, no quieres ser tan bueno, eres tú.
  • <|ibai|>la música que me gusta escuchar, claro. hay muchas personas que no nos conocen de nada, se nota. es un tío muy, muy, muy directo y creo que a lo mejor es un poco directo, de hecho, hay mucho ego en su actitud. la gente en general está bastante influenciada por él.
  • <|ibai|>un día todos deberíamos tener una vida, que es el futuro, una vida en paz con uno mismo, con la sociedad, y eso no es tan complicado como parece. y te digo lo de
  • <|ibai|>la felicidad es cuando hay armonía, que el mundo entero tiene su armonía. bueno, amigos, es que estamos unidos, a mí la música me relaja. bueno, es que no quiero dejar de escucharme ni de escuchar. y la música, de hecho, no es mi música, es mi vida.
  • <|ibai|>si voy a un restaurante, voy a un restaurante de argentina. me voy a un restaurante argentino. ¡ah, la verdad que me lo estoy pasando bien!
  • <|ibai|>la navidad es muy importante, porque es la época que vivimos. ¿ no crees que la navidad sería algo diferente de como la vivimos nosotros? en vez de algo muy tradicional, de un poco de juerga y de hacer una noche loca. no sé si la navidad es de las fechas en las que más fiesta hay. de verdad, no sé si es de las fechas en las que más fiesta hay o más fiesta no hay.
  • <|ibai|>en el próximo mes voy a empezar el segundo año. me llevo la bici para el club. de momento, voy a aprender a convivir con mis seguidores. y de hecho, hoy estoy hablando de eso.
  • <|ibai|>la inteligencia artificial, la realidad aumentada, ¿ qué pasa, tío? en este mundo hay gente que intenta crear un juego de magia que le pueda pasar un poquito de mal. bueno, que sí, que le pasa con las personas.
  • <|ibai|>la inteligencia artificial se está dando en todos los ámbitos. se está dando en todos los ámbitos, es cierto. en general, es un mundo donde la inteligencia artificial y el cerebro humano son los dos primeros motores.
  • <|ibai|>¿ qué es la inteligencia artificial? inteligencia artificial, es la de verdad. si la inteligencia artificial es más potente, es más fácil trabajar con ella. y es más difícil tener más inteligencia. porque la inteligencia artificial es la de verdad.
  • <|ibai|>yo sé mucho sobre el tema, pero me hace un poco de gracia. y también quiero que vosotros tengáis una gran audiencia, que leéis un libro, porque yo creo que eso es una idea que está muy bien. y es que si a tu amiga le pasa lo mismo que a ti, se va al final. por eso te pido que se ponga a grabar el libro, porque yo creo que eso, como el libro ya está hecho, le va a quedar espectacular.
  • <|ibai|>el amor es el camino, y no te vas a quedar ahí, a las 9. 40 am. el amor es un sentimiento que debe de ser muy fuerte en tu vida. a ver, yo creo que en la vida hay un tipo de personas que te hacen sentir una persona especial en tu vida. y el amor, que es la otra persona, también lo es.
Imagen generada por el autor con StableDiffusion

Resumen

En estos días estamos viendo cómo ChatGPT está siendo trending topic por ser el modelo GPT más poderoso y versátil de OpenAI, con capacidad de responder a cualquier pregunta, traducir idiomas, dar definiciones, crear poesía, historias y realizar snippets de código python.

En este artículo te acercamos un poco más a conocer qué son los modelos GPT que están revolucionando el campo del NLP mediante un ejercicio práctico.

Ya conoces un poco más sobre la librería transformers de HuggingFace, sobre los distintos modelos que puedes descargar en tu ordenador y personalizar. Como siempre, esto es sólo la punta del iceberg, te invito a que sigas investigando y aprendiendo más sobre todo ello y me dejes tus comentarios al respecto.

Nos vemos en el próximo post!

Puedes descargar la notebook con el ejercicio completo y el archivo con los textos de Ibai.

Otros Enlaces de interés

Suscripción al Blog

Recibe los próximos artículos sobre Machine Learning, estrategias, teoría y código Python en tu casilla de correo!

NOTA: algunos usuarios reportaron que el email de confirmación y/o posteriores a la suscripción entraron en su carpeta de SPAM. Te sugiero que revises y recomiendo que agregues nuestro remitente info @ aprendemachinelearning.com a tus contactos para evitar problemas. Gracias!

El libro del Blog

Si te gustan los contenidos del blog y quieres darme tu apoyo, puedes comprar el libro en papel, ó en digital (también lo puede descargar gratis!).

The post Generación de Texto en Español con GPT-2 first appeared on Aprende Machine Learning.

]]>
https://aprendemachinelearning.com/generacion-de-texto-en-espanol-con-gpt-2/feed/ 4 7869
¿Cómo funcionan los Transformers? en Español https://aprendemachinelearning.com/como-funcionan-los-transformers-espanol-nlp-gpt-bert/ https://aprendemachinelearning.com/como-funcionan-los-transformers-espanol-nlp-gpt-bert/#comments Tue, 08 Nov 2022 08:54:00 +0000 https://www.aprendemachinelearning.com/?p=7771 El Machine Learning cambió para siempre con la llegada en 2017 de un paper llamado Attention is all you need en donde se presentaba una nueva arquitectura para NLP: Los Transformers

The post ¿Cómo funcionan los Transformers? en Español first appeared on Aprende Machine Learning.

]]>
Imagen creada por el Autor utilizando el modelo de text-to-img StableDiffusion

Los Transformers aparecieron como una novedosa arquitectura de Deep Learning para NLP en un paper de 2017 “Attention is all you need” que presentaba unos ingeniosos métodos para poder realizar traducción de un idioma a otro superando a las redes seq-2-seq LSTM de aquel entonces. Pero lo que no sabíamos es que este “nuevo modelo” podría ser utilizado en más campos como el de Visión Artificial, Redes Generativas, Aprendizaje por Refuerzo, Time Series y en todos ellos batir todos los records! Su impacto es tan grande que se han transformado en la nueva piedra angular del Machine Learning.

En este artículo repasaremos las piezas fundamentales que componen al Transformer y cómo una a una colaboran para conseguir tan buenos resultados. Los Transformers y su mecanismo de atención posibilitaron la aparición de los grandes modelos generadores de texto GPT2, GPT3 y BERT que ahora podían ser entrenados aprovechando el paralelismo que se alcanza mediante el uso de GPUs.

Agenda

  • ¿Qué son los transformers?
  • Arquitectura
    • General
    • Embeddings
    • Positional Encoding
    • Encoder
      • Mecanismo de Atención
      • Add & Normalisation Layer
      • Feedforward Network
    • Decoder
    • Salida del Modelo
  • Aplicaciones de los Transformers
    • BERT
    • GPT-2
    • GPT-3
  • Resumen

¿Qué son los transformers en Machine Learning?

En el paper original de 2017 “Attention is all you need” aparece el diagrama con la novedosa arquitectura del Transformer, que todos deberíamos tatuarnos en un brazo. Esta arquitectura surge como una solución a problemas de aprendizaje supervisado en Procesamiento del Lenguaje Natural, obteniendo grandes ventajas frente a los modelos utilizados en ese entonces. El transformer permitía realizar la traducción de un idioma a otro con la gran ventaja de poder entrenar al modelo en paralelo; lo que aumentaba drásticamente la velocidad y reducción del coste; y utilizando como potenciador el mecanismo de atención, que hasta ese momento no había sido explotado del todo. Veremos que en su arquitectura utiliza diversas piezas ya existentes pero que no estaban combinadas de esta manera. Además el nombre de “Todo lo que necesitas es Atención” es a la vez un tributo a los Beatles y una “bofetada” a los modelos NLP centrados en Redes Recurrentes que en ese entonces estaban intentando combinarlos con atención. De esta sutil forma les estaban diciendo… “tiren esas redes recurrentes a la basura”, porque el mecanismo de atención NO es un complemento… es EL protagonista!

All you need is Love Attention

The Beatles

Con el tiempo, esta arquitectura resultó ser flexible y se pudo utilizar para tareas más allá del NLP, además de para la generación de texto, clasificación, resumen de contenidos también pudo traspasar esa frontera y ser aplicado en Visión Artificial, Generación de Audio, Predicción de Series Temporales y Aprendizaje por Refuerzo.

La Arquitectura Encoder-Decoder del Transformer

Veamos primero la gran foto de los Transformers.

Visión General

Estás viendo el dibujo que deberías de llevar en tu próxima camiseta:

La Arquitectura de los Transformers

La primera impresión puede ser algo intimidante, pero vayamos poco a poco. Si pensamos en el modelo como una caja negra, sería simplemente:

Entrada -> Transformer -> Salida

Vemos que con una entrada de texto “Hola” obtenemos la salida “Hello”.

Si hacemos un poco de zoom en esa caja, veremos dos componentes principales: Encoders y Decoders.

La entrada pasará por una serie de Encoders que se encadenan uno tras otro y luego envían su salida a otra serie de Decoders hasta emitir la Salida final. En el paper original, se utilizan 6 encoders y 6 decoders. Notaremos un recuadro llamado “Target” donde estamos pasando el Output Deseado al modelo para entrenar; pero obviamente que no lo pasaremos al momento de la inferencia; al menos no completo (más adelante en el artículo).

Observamos ahora con mayor detalle cómo está compuesto un Encoder y un Decoder y veremos que son bastante parecidos por dentro.

En su interior tanto Encoder como decoder cuentan con un componente de Atención (o dos) y una red neuronal “normal” como salidas.

Para comenzar a evaluar con mayor detalle las partes del Transformer, primero deberemos generar un Embedding de la entrada y luego entrar al Encoder. Así que veamos eso primero.

Embeddings

El uso de embeddings existía en NLP desde antes de los Transformers, puede que estés familiarizado con modelos como el word-2-vec y puede que ya hayas visto las proyecciones creadas con miles de palabras donde los embeddings logran agrupar palabras de manera automática en un espacio multidimensional. Entonces conceptos como “hombre y mujer”, distanciado de “perro y gato” veremos nombres de países juntos y profesiones ó deportes también agrupados en ese espacio. Primero convertimos las palabras a tokens, es decir a un valor numérico asociado, porque recordemos que las redes neuronales únicamente pueden procesar números y no cadenas de texto.

Ejemplo de Word Embeddings y una proyección en 3D.

Entonces convertimos una palabra a un número, ese número a un vector de embeddings de 512 dimensiones (podría ser de otro valor, pero el propuesto en el paper fue este).

Entonces:

  1. Palabra -> Token(*)
  2. Token -> Vector n-dimensional

(*) NOTA: una palabra podría convertirse en más de un token

La parte novedosa que introduce el paper de los transformers, es el “Positional Encoding” a esos embeddings…

Positional Encoding

Una vez que tenemos los embeddings, estaremos todos de acuerdo que el orden en que pasemos las palabras al modelo, será importante. De hecho podríamos alterar totalmente el significado de una oración si mezclamos el orden de sus palabras o hasta podría carecer totalmente de significado.

La casa es verde != verde casa la es

Entonces necesitamos pasar al modelo los tokens pudiendo especificar de alguna manera su posición.

Aquí, de paso comentaremos dos novedades de los Transformers: la solución a este posicionamiento pero también esto permite el poder enviar en simultáneo TODOS los tokens al modelo, algo que anteriormente no se podía hacer, por lo que se pasaba “palabra por palabra” una después de la otra, resultando en una menor velocidad.

Para resolver el posicionamiento, se agrega una valor secuencial al embedding que se asume que la red podrá interpretar. Si aparece el token “perro” como segunda palabra ó como décima, mantendrá en esencia el mismo vector (calculado anteriormente en el embedding) pero con un ligero valor adicional que lo distinguirá y que será el que le de la pista a la red neuronal de interpretar su posición en la oración.

En el paper se propone una función sinusoidal sobre el vector de 512 dimensiones del embedding. Entonces ese vector de embeddings del token “perro” será distinto si la palabra aparece primera, segunda, tercera.

Y ahora sí, podemos dar entrada al Encoder de los Transformers.

Encoder

El Encoder está compuesto por la capa de “Self attention” y esta conectada a una red feed forward. Entre las entradas y salidas se aplica la Skip Connection (ó ResNet) y un Norm Layer.

El mecanismo de Atención, es una de las implementaciones novedosas que propone el paper. Veremos que logra procesar en paralelo, manteniendo la ventaja de entreno mediante GPU.

El Encoder tiene como objetivo procesar la secuencia de los tokens de entrada y ser a su vez la entrada del mecanismo de atención del Decoder. No olvides que realmente se encadenan varios Encoders con varios Decoders (no se utilizan sólo uno en la práctica).

El -dichoso- mecanismo de Atención

Primero que nada, ¿Para qué queremos un mecanismo de Atención? El mecanismo de atención nos ayuda a crear y dar fuerza a las relaciones entre palabras en una oración. Si tenemos el siguiente enunciado:

El perro estaba en el salón, durmiendo tranquilo.

Nosotros comprendemos fácilmente que la palabra “tranquilo” se refiere al perro y no al “salón”. Pero a la red neuronal que comienza “en blanco”, sin saber nada de las estructuras del lenguaje (español, pero podría ser cualquier idioma), y que además ve la misma frase como valores numéricos:

5 186 233 7 5 1433 567 721

NOTA: no olvides que cada token, por ej. el nº5 corresponde a un embedding de n-dimensiones de 512 valores. Por simplificar usamos el 5 como reemplazo de “El”, por no escribir sus 512 componentes.

¿Cómo podrá entender que ese último token “721” está afectando a la segunda palabra “186”?
Por eso surgen los mecanismos de atención; para lograr dar más -o menos- importancia a una palabra en relación a las otras de la oración.

La solución que presentan los Transformers en cuanto a la atención, es la construcción de un “Diccionario Blando” (Soft Dictionary). ¿Qué es esto de un diccionario blando?
En programación, es probable que conozcas el uso de diccionarios de tipo “clave-valor” un típico “hashmap” en donde ante una entrada, obtengo un valor dict[“perro”]=0.78.
Para el “diccionario de atenciones” podría ser que si pedimos la atención de “tranquilo vs perro” de la oración, nos devuelva un 1 indicando mucha atención, pero si le pedimos “tranquilo vs salón” nos devuelva un -1.

Pero… eso no es todo. Nuestro Diccionario es “Suave/Blando”, esto quiere decir que no se va a saber “de memoria” el resultado de una clave. Si alteramos un poco la oración, el diccionario tradicional fallaría:

El perro estaba durmiendo en un salón tranquilo.

Ahora la clave de atención para “tranquilo vs salón” deberá pasar de -1 a ser cercana a 1.

Para poder calcular la atención, se utilizan 3 matrices llamadas “Query-Key-Value” que van a operar siguiendo una fórmula que nos devuelve un “score” o puntaje de atención.

  • En la matriz Q de Query tendremos los tokens (su embedding) que estamos evaluando.
  • En la matriz K de Key tendremos los tokens nuevamente, como claves del diccionario.
  • En la matriz V de Value tendremos todos los tokens (su embedding) “de salida”.

El resultado de la atención será aplicar la siguiente fórmula:

Si nos olvidamos del Softmax y el “multihead” (se definirá a continuación), podemos simplificar la fórmula diciendo que:
La atención será multiplicación matricial Q por la transpuesta de K; a eso le llamamos “factor”; y ese factor multiplicado por V.

¿Y eso qué significa? ¿Por qué estamos operando de esa manera? Si recuerdas, tanto Q como K son los valores de los Embeddings, es decir, cada token es un vector n-dimensional. Al hacer el producto vectorial obtenemos matemáticamente la “Similitud” entre los vectores. Entonces si el embedding estuviera funcionando bien, la similitud entre “nieve” y “blanco” deberían estar más cercanas que “nieve” y “negro”. Entonces cuando dos palabras sean similares, tendremos un valor positivo y mayor que si son opuestos, donde obtendríamos un valor negativo (dirección contraria). Este factor se multiplica por la matriz de Valor conformando el Score final de atención para cada relación entre pares de <<palabras>> que estamos evaluando.

Como estamos trabajando con matrices, seguimos aprovechando la capacidad de calcular todo a la vez y poder hacerlo acelerado por GPU.

Más de una atención: Multi-Head Attention

…hay más en el paper, porque el tipo de atención que vamos a calcular se llama “Multi-head Attention“. ¿Qué son esas “Multi-cabezas”??? Lo que se hace es que en vez de calcular la atención de todos los tokens de la oración una vez con las 512 dimensiones (provenientes del embedding), subdividiremos esos valores en grupos y de cada uno, calcular su atención. En el paper proponen “8 heads” con lo que entonces calcularemos “8 atenciones de a 64 valores del embeddings” por cada token! Esto a mi modo de entender es algo bastante arbitrario pero por arte de “magia matemática” funciona… Luego de calcular esas 8 cabezas, (esas 8 atenciones) haremos un promedio de los valores de cada atención entre tokens.

Si volvemos al ejemplo para la clave de “tranquilo vs perro” calcularemos 8 atenciones y al promediarlas deberíamos obtener un valor cercano a 1 (para la 1er oración).

Cuando terminemos de entrenar el modelo Transformer completo, podríamos intentar analizar y entender esas matrices de atención creadas y tratar de comprenderlas. Algunos estudios muestran que la “multi-atención” logra representar relaciones como la de “artículo-sustantivo” ó “adjetivo-sustantivo”, “verbo sustantivo” lo cual me sigue pareciendo algo increíble.

3 tipos de atención: Propia, Cruzada y Enmascarada

Prometo que esto ya es lo último que nos queda comprender sobre los mecanismos de atención… A todo lo anterior, hay que sumar que tenemos 3 tipos distintos de atención

  1. Self Attention
  2. Cross Attention
  3. Masked Attention

Su comportamiento es igual que al descripto anteriormente pero con alguna particularidad:

Self Attention se refiere que crearemos los valores y las matrices de Q-K-V a partir de las propias entradas de los tokens de entrada.

En la Atención Cruzada, vemos cómo utilizamos como entradas en el Decoder los valores obtenidos en el Encoder. Esto es lo que hará que con sólo el valor (Value) del Output pueda modelar la salida de atención buscada, esto es importante porque al final es lo que condicionará mayormente la “traducción” que está haciendo internamente el Decoder!

Y la llamada “Masked attention” se refiere a que enmascaramos parte triangular superior de la matriz de atención al calcularla para no caer en “data-leakage”, es decir, para no “adelantar información futura” que el Output no podría tener en su momento. Esto puede resultar confuso, intentaré aclararlo un poco más. En el Encoder, cuando tenemos los valores de entrada y hacemos “self-attention” dijimos que calculamos la atención de “todos contra todos” porque todos los tokens de entrada son conocidos desde el principio. Si recordamos la frase anterior:

El perro estaba en el salón, durmiendo tranquilo.

Aquí podemos calcular tanto la atención para la clave “perro-tranquilo” y también la de “tranquilo-perro”

Sin embargo -si suponemos que estamos traduciendo al inglés- en el output tendremos

“The dog was in the living room, sleeping peacefully”

PERO hay un detalle; para poder generar el output al momento de la inferencia, generaremos de a una palabra por vez, entonces iremos produciendo el siguiente output:

T1 – The
T2 – The dog
T3 – The dog was
T4 – The dog was in …

Esto quiere decir que vamos generando los tokens de a uno a la vez por lo que al principio no podríamos conocer la relación entre “dog-peacefully” pues esta relación aún no existe!

Entonces diferenciemos esto:

-> Al momento de entrenar el modelo pasamos el output deseado COMPLETO a las matrices de QKV de “Masked Attention” para entrenar en paralelo; al estar enmascarado, es como si estuviésemos simulando la secuencia “The, The dog, The dog was…”

-> Al momento de inferencia REALMENTE tendremos uno a uno los tokens como una secuencia temporal, realmente, iremos agregando de a una palabra del output a la cadena de salida a la vez.

Al enmascarar la matriz Q*K en su diagonal superior, prevenimos obtener valores “futuros” en la relación de atención entre sus tokens.

Short residual skip Connections y Layer Normalization

Al utilizar Skip Connections permitimos mantener el valor de origen del input a través de las deep neural networks evitando que sus pesos se desvanezcan con el paso del tiempo. Esta técnica fue utilizada en las famosas ResNets para clasificación de imágenes y se convirtieron en bloques de construcción para redes profundas. También es sumamente importante la Normalización en RRNN. Previene que el rango de valores entre capas cambie “demasiado bruscamente” logrando hacer que el modelo entrene más rápido y con mayor capacidad de generalización.

Feed Forward Network

La salida final del Encoder la dará una Red Neuronal “normal”, también llamada MLP ó capa densa. Se agregarán dos capas con Dropout y una función de activación no lineal.

Decoder

Ahora que conocemos los componentes del Encoder, podemos ver que con esos mismos bloques podemos crear el Decoder.

Al momento de entrenar, estaremos pasando el Input “hola amigos” y Output “hello friends” (su traducción) al mismo tiempo al modelo.

Tradicionalmente, usamos la salida únicamente para “validar” el modelo y ajustar los pesos de la red neuronal (durante el backpropagation). Sin embargo en el Transformer estamos usando la salida “hello friends” como parte del aprendizaje que realiza el modelo.

Entonces, el output “hello friends” es también la “entrada” del decoder hacia embeddings, posicionamiento y finalmente ingreso a la Masked Self Attention que comentamos antes (para los valores de Q,K,V).

De aquí, y pasando por la Skip Connection y Normalización (en la gráfica “Add & Norm) entramos al segundo mecanismo de Atención Cruzada que contiene para las matrices Query y Key” la salida del Encoder y como Value la salida de la Masked Attention.

Nuevamente Suma y Normalización, entrada a la Feed Forward del Decoder.

RECORDAR: “N encoder y N decoders”

No olvidemos que si bien estamos viendo en mayor detalle “un encoder” y “un decoder”, la arquitectura completa del Transformer implica la creación de (en el paper original) 6 encoders encadenados que enlazan con otros 6 decoders.

Salida final del Modelo

La salida final del modelo pasa por una última capa Lineal y aplicar Softmax. El Softmax, por si no lo recuerdas nos dará un valor de entre 0 y 1 para cada una de las posibles palabras (tokens) de salida. Entonces si nuestro “lenguaje” total es de 50.000 posibles tokens (incluyendo signos de puntuación, admiración, interrogación), encontraremos a uno de ellos con valor más alto, que será la predicción.

Si yo te dijera “en casa de herrero cuchillo de …” y vos tuvieras que predecir la próxima palabra, de entre todas las posibles en el castellano seguramente elegirías “palo” con probabilidad 0,999. Ahí acabas de aplicar Softmax intuitivamente en tu cabeza, y descartaste al resto de 49.999 palabras restantes.

Repaso de la arquitectura

Repasemos los puntos fuertes de la arquitectura de los Transformers:

  • La arquitectura de Transformers utiliza Encoders y Decoders
  • El Transformer permite entrenar en paralelo y aprovechar el GPU
  • Utiliza un mecanismo de atención que cruza en memoria “todos contra todos los tokens” y obtiene un score. Los modelos anteriores como LSTM no podían memorizar textos largos ni correr en paralelo.
  • El mecanismo de atención puede ser de Self Attention en el Encoder, Cross Attention ó Masked Attention en el Decoder. Su funcionamiento es igual en todos los casos, pero cambian los vectores que utilizamos como entradas para Q,K,V.
  • Se utiliza El Input pero también la Salida (el Output del dataset) para entrenar al modelo.

Aplicaciones de los Transformers

Los Transformers se convirtieron en el modelo “de facto” para todo tipo de tareas de NLP, incluyendo Traducción de idiomas (como vimos), clasificación de texto, resumen de textos y Question-Answering. Sólo basta con modificar los datasets que utilizamos para entrenar al modelo y la “salida final del modelo”, manteniendo al resto de arquitectura.

A raíz de poder entrenar mediante GPU, reducción de tiempo y dinero, surgieron varios modelos para NLP que fueron entrenados con datasets cada vez más grandes, con la creencia de que cuantas más palabras, más acertado sería el modelo, llevándolos al límite. Ahora, parece que hemos alcanzado un tope de acuracy, en el cual no vale la pena seguir extendiendo el vocabulario.

Vemos 3 de estos grandes modelos de NLP y sus características

BERT – 2018

BERT (Bidirectional Encoder Representations from Transformers) aparece en 2018, desarrollado por Google y utiliza sólo la parte del Encoder de los Transformers. Este modelo fue entrenado con todos los artículos de la Wikipedia en Inglés que contiene más de 2500 millones de palabras. Esto permitió generar un modelo “pro-entrenado” en inglés muy poderoso que podía ser utilizado para múltiples tareas de NLP. Además, al ser Open Source, permitió la colaboración y extensión por parte de la comunidad científica. El poder utilizar un modelo pre-entrenado tan grande, preciso y potente, permite justamente “reutilizar” ese conocimiento sin necesidad de tener que entrenar nuevamente un modelo de NLP, con el coste y tiempo (e impacto medioambiental) que puede conllevar.

Además BERT contenía algunas novedades, por ejemplo, en vez de utilizar un “Embeddings único y estático”, implementó un mecanismo en donde la misma palabra (token) podría devolver un vector distinto (de “embeddings”) de acuerdo al contexto de la oración de esa palabra.

Cuando salió BERT, batió muchos de los records existentes en datasets como SQuAD, GLUE y MultiNLI.

GPT-2 – 2019

GPT es un modelo de generación de texto creado por Open AI en 2019 y que contiene 1500 millones de parámetros en la configuración de su red neuronal profunda.

Al ser entrenado para generar “siguiente palabra”, pasa a convertirse en un problema de tipo “no supervisado”. Su re-entreno fue realizado usando BooksCorpus, un dataset que contiene más de 7,000 libros de ficción no publicados de diversos géneros.

Este modelo generó polémica en su momento debido a que empezaba a crear textos similares a lo que podía escribir una persona, con lo cual antes de ser lanzado, se temió por su mal uso para generar contenido falso en internet. Había sido anunciado en febrero y recién fue accesible al público, de manera parcial en Agosto. Los modelos de tipo GPT utilizan únicamente la parte de “Decoder” del Transformer.

Ejercicio Práctico: Crea tu propio chatbot con GPT-2 en Español!

GPT-3 – 2020

Lanzado en 2020, la red de GPT-3 tiene 175.000 millones de parámetros. Entrenado con textos de internet que contienen más de 500.000 millones de tokens.

En GPT-3, la generación de textos por la IA puede alcanzar un nivel literario que pasa inadvertido por los humanos, el modelo es capaz de mantener la coherencia en textos largos y debido a su gran conocimiento del mundo, crear un contexto y párrafos muy reales.

Otra de las novedades que trajo GPT3 es que lograba realizar tareas “inesperadas” de manera correcta, sin haber sido entrenado para ello. Por ejemplo, puede realizar Question-Answer, crear diálogos ó hasta escribir código en Python, Java o traducir idiomas. A este tipo de aprendizaje “no buscado” le llamamos “One Shot Learning”.

El Codigo de GPT-3 aún no ha sido liberado, hasta la fecha.

Más allá del NLP

Al comportarse tan bien para tareas de NLP, se comenzó a utilizar esta arquitectura adaptada para Clasificación de imágenes en Computer Vision y también logró superar en muchos casos a las Redes Convolucionales! A este nuevo modelo se le conoce como Vision Transformer o “Vit”.

También podemos utilizar Transformers para pronóstico de Series Temporales (Time Series). Este caso de uso tiene mucha lógica si lo pensamos, porque al final es muy parecido a “predecir la próxima palabra”, pero en su lugar “predecir la próxima venta”, ó stock…

Los Transformers están siendo utilizados en modelos generativos de música o como parte de los modelos de difusión text-to-image como Dall-E2 y Stable Diffusion.

Por último, los Transformers también están siendo utilizados en Aprendizaje por Refuerzo, donde también tienen sentido, pues la fórmula principal de este tipo de problemas también contiene una variable temporal/secuencial.

Y en todos estos campos, recién está empezando la revolución! No digo que será el Transformer quien reemplace al resto de Arquitecturas y modelos de Machine Learning existentes, pero está siendo un buen motivo para cuestionarlos, replantearlos y mejorar!

Resumen

Los Transformers aparecieron en un paper de 2017 implementando un eficiente mecanismo de atención como punto clave para resolver problemas de traducción en el campo del Procesamiento del Lenguaje Natural. Como bien sabemos, el lenguaje escrito conlleva implícitamente un orden temporal, secuencial que hasta aquel entonces era una de las barreras para no poder crear modelos extensos, pues impedía el aprovechamiento de GPU. La nueva arquitectura rompía esa barrera utilizando unos sencillos trucos: utilizar todos los token al mismo tiempo (en vez de uno en uno) y enmascarar la multiplicación matricial para impedir el data leakage en el caso del decoder.

Además, resolvió el Posicionamiento de los token y aprovechó técnicas ya existentes como el uso de Skip Connections y Normalization Layers.

Todo ello posibilitó la creación de los grandes modelos actuales, BERT, GPT y la aparición de muchísimos modelos disponibles “pre-entrenados” que pueden ser descargados y reutilizados para fine-tuning por cualquier persona.

Como si esto fuera poco, los Transformers tienen la flexibilidad suficiente para traspasar el área de NLP y contribuir al resto de áreas del Machine Learning obteniendo resultados impresionantes.

Habrá que agradecer a Ashish VaswaniNoam ShazeerNiki ParmarJakob UszkoreitLlion JonesAidan N. GomezLukasz KaiserIllia Polosukhin por su obra maestra.

Material Extra

Enlaces a más info sobre Transformers!

Suscripción al Blog

Recibe los próximos artículos sobre Machine Learning, estrategias, teoría y código Python en tu casilla de correo!

NOTA: algunos usuarios reportaron que el email de confirmación y/o posteriores a la suscripción entraron en su carpeta de SPAM. Te sugiero que revises y recomiendo que agregues nuestro remitente info @ aprendemachinelearning.com a tus contactos para evitar problemas. Gracias!

El libro del Blog

Si te gustan los contenidos del blog y quieres darme tu apoyo, puedes comprar el libro en papel, ó en digital (también lo puede descargar gratis!).

The post ¿Cómo funcionan los Transformers? en Español first appeared on Aprende Machine Learning.

]]>
https://aprendemachinelearning.com/como-funcionan-los-transformers-espanol-nlp-gpt-bert/feed/ 1 7771
Crea imágenes increíbles con Inteligencia Artificial en tu ordenador https://aprendemachinelearning.com/crea-imagenes-stable-diffusion-con-inteligencia-artificial-en-tu-ordenador/ https://aprendemachinelearning.com/crea-imagenes-stable-diffusion-con-inteligencia-artificial-en-tu-ordenador/#respond Thu, 06 Oct 2022 08:00:00 +0000 https://www.aprendemachinelearning.com/?p=7681 El modelo de Machine Learning llamado Stable Diffusion es Open Source y permite generar cualquier imagen a partir de un texto, por más loca que sea, desde el sofá de tu casa! Estamos viviendo unos días realmente emocionantes en el campo de la inteligencia artificial, en apenas meses, hemos pasado de tener modelos enormes y […]

The post Crea imágenes increíbles con Inteligencia Artificial en tu ordenador first appeared on Aprende Machine Learning.

]]>
El modelo de Machine Learning llamado Stable Diffusion es Open Source y permite generar cualquier imagen a partir de un texto, por más loca que sea, desde el sofá de tu casa!

Estamos viviendo unos días realmente emocionantes en el campo de la inteligencia artificial, en apenas meses, hemos pasado de tener modelos enormes y de pago en manos de unas pocas corporaciones a poder desplegar un modelo en tu propio ordenador y lograr los mismos -increíbles- resultados de manera gratuita. Es decir, ahora mismo, está al alcance de prácticamente cualquier persona la capacidad de utilizar esta potentísima herramienta y crear imágenes en segundos (ó minutos) y a coste cero.

En este artículo les comentaré qué es Stable Diffusion y por qué es un hito en la historia de la Inteligencia Artificial, veremos cómo funciona y tienes la oportunidad de probarlo en la nube o de instalarlo en tu propio ordenador sea Windows, Linux ó Mac, con o sin placa GPU.

Reseña de los acontecimientos

  • 2015: Paper que propone los Diffusion Models.
  • 2018 -2019 Text to Image Synthesis – usando GANS se generan imágenes de 64×64 pixels, utiliza muchos recursos y baja calidad de resultados.
  • Enero 2021: Open AI anuncia Dall-E, genera imágenes interesantes, pequeñas, baja resolución, lentas.
  • Febrero 2021: CLIP de Open AI (Contrastive Language-Image Pretraining), un codificador dual de lenguaje-imagen muy potente.
  • Julio 2021: Image Text Contrastive Learning Mejora sobre las Gans “image-text-label” space.
  • Marzo 2022: GLIDE: esta red es una mejora sobre Dall-E, tambien de openAI pero usando DIFFUSION model.
  • Abril 2022: Dall-E 2 de Open AI, un modelo muy bueno de generación de imágenes. Código cerrado, acceso por pedido y de pago.
  • Mayo 2022: Imagen de Google.
  • Agosto de 2022: Lanzamiento de Stable Diffusion 1.4 de Stability AI al público. Open Source, de bajos recursos, para poder ejecutar en cualquier ordenador.

¿Qué es Stable Diffusion?

Stable Diffusion es el nombre de un nuevo modelo de Machine Learning de Texto-a-Imagen creado por Stability Ai, Comp Vis y LAION. Entrenado con +5 mil millones de imágenes del dataset Laion-5B en tamaño 512 por 512 pixeles. Su código fue liberado al público el 22 de Agosto de 2022 y en un archivo de 4GB con los pesos entrenados de una red neuronal que podemos descargar desde HuggingFace, tienes el poder de crear imágenes muy diversas a partir de una entrada de texto.

Stable Diffusion es también una gran revolución en nuestra sociedad porque trae consigo diversas polémicas; al ofrecer esta herramienta a un amplio público, permite generar imágenes de fantasía de paisajes, personas, productos… ¿cómo afecta esto a los derechos de autor? Qué pasa con las imágenes inadecuadas u ofensivas? Qué pasa con el sesgo de género? Puede suplantar a un diseñador gráfico? Hay un abanico enorme de incógnitas sobre cómo será utilizada esta herramienta y la disrupción que supone. A mí personalmente me impresiona por el progreso tecnológico, por lo potente que es, los magnificos resultados que puede alcanzar y todo lo positivo que puede acarrear.

¿Por qué tanto revuelo? ¿Es como una gran Base de datos de imágenes? – ¡No!

Es cierto que fue entrenada con más de 5 mil millones de imágenes. Entonces podemos pensar: “Si el modelo vio 100.000 imágenes de caballos, aprenderá a dibujar caballos. Si vio 100.000 imágenes de la luna, sabrá pintar la luna. Y si aprendió de miles de imágenes de astronautas, sabrá pintar astronautas“. Pero si le pedimos que pinte “un astronauta a caballo en la luna” ¿qué pasa? La respuesta es que el modelo que jamás había visto una imagen así, es capaz de generar cientos de variantes de imágenes que cumplen con lo solicitado… esto ya empieza a ser increíble. Podemos pensar: “Bueno, estará haciendo un collage, usando un caballo que ya vio, un astronauta (que ya vió) y la luna y hacer una composición“. Y no; no es eso lo que hace, ahí se vuelve interesante: el modelo de ML parte de un “lienzo en blanco” (en realidad es una imagen llena de ruido) y a partir de ellos empieza a generar la imagen, iterando y refinando su objetivo, pero trabajando a nivel de pixel (por lo cual no está haciendo copy-paste). Si creyéramos que es una gran base de datos, les aseguro que no caben las 5.500.000.000 de imágenes en 4 Gygabytes -que son los pesos del modelo de la red- pues estaría almacenando cada imagen (de 512x512px) en menos de 1 Byte, algo imposible.

¿Cómo funciona Stable Diffusion?

Veamos cómo funciona Stable Diffusion!

Stable Diffusion está basado en otro modelo llamado “Latent Diffusion” que proviene de modelos de difusión de ML que están entrenados para “eliminar el ruido de “imágenes sucias” paso a paso”. Esto quiere decir que al modelo le entrenamos con fotos donde ensuciamos ciertos pixeles, con manchas, desenfoque (blur) o distorsiones que agregamos a propósito y le pedimos como salida la imagen correcta (la imagen original sin ruido). Entonces, la red neuronal del modelo aprende a “quitar el ruido”, es decir, transformar esas manchas (ruido) en la imagen original.

Los modelos de difusión lograron resultados muy buenos como generadores de imágenes aunque su contra es que como trabajan a nivel de pixel requieren de mucha memoria RAM y toman tiempo para crear imágenes de alta definición.

La mejora introducida por los modelos “Latent Diffusion” es que el modelo es entrenado para generar “representaciones de imágenes latentes” (comprimidas). Sus tres componente principales son:

  1. Autoencoder (VAE)
  2. U-Net
  3. Text-Encoder

1-Autoencoder (VAE)

El modelo VAE tiene dos partes, un codificador y un decodificador. En codificador es usado para convertir la imagen en una representación latente de baja dimensión, que servirá como entrada a la “U-Net”. El decodificador por el contrario, transforma la representación latente nuevamente en una imagen.

Durante el entrenamiento de difusión latente, se usa el codificador para obtener las representaciones latentes de las imágenes para el proceso de difusión directa, se aplica más y más ruido en cada paso. Durante la inferencia, se realiza el proceso inverso de difusión donde “expande los latentes” para convertirlos nuevamente en imágenes con el decodificador VAE. Para la inferencia sólo necesitamos el decodificador.

Ejemplo de arquitectura de una red Autoencoder VAE del artículo “VAE

2-U-Net

La U-Net tiene una mitad de camino “de contracción” y otra mitad de “expansión“, ambos compuestos por bloques ResNet (para soportar redes profundas sin desvanecer el aprendizaje). La primera mitad de la U-Net reduce la imagen a una representación de baja resolución (similar a un encoder) y la segunda parte intentará generar la imagen original en alta resolución (similar a un decoder). La salida de la U-Net predice el “ruido residual” que puede ser usado para calcular la representación “sin ruido” de la imagen.

Para prevenir que la U-Net pierda información importante durante el downsampling, se agregan conexiones de “atajo corto” (skip connections) entre los dos caminos: encoder y decoder. Además la U-Net de stable diffusion puede condicionar su salida respecto de los text-embeddings de las capas de cross-attention. Las capas de “Atención Cruzada” se agregan tanto en las partes de codificación y decodificación de la U-Net, entre los bloques ResNet. A eso se le llama Difusión guiada ó Difusión condicionada.

Ejemplo de Arquitectura de una U-Net, se llama así por su forma de “U”.

3-Text-Encoder

El Text-Encoder es el responsable de transformar el mensaje de entrada por ejemplo “Ilustración de Taylor Swift con un pingüino bailando en la ciudad” en un espacio de embeddings que puede ser comprendido por la U-Net. Se utiliza un encoder de tipo Transformers que mapea la secuencia de palabras de entrada en una secuencia latente del embedding de textos.

Stable Diffusion no entrena al Text-Encoder durante la etapa de entrenamiento del modelo si no que utiliza un encoder ya entrenado de CLIP.

Ejemplo de arquitectura de Clip, un modelo text-encoder
Ilustración de Taylor Swift con un Pingüino bailando en la ciudad, creada por el Autor.

Resumen de la arquitectura de Stable Difussion

El modelo al completo, como lo muestra la web oficial de Stable Diffusion es así:

Gráfica de arquitectura de Stable Diffusion. Fuente: web oficial de Stable Diffusion

Al momento de entrenar, la red tiene como entrada una imagen y un texto asociado. La red convertirá la imagen “en ruido” por completo y luego la intentará reconstruir. No olvidemos que es un problema de Aprendizaje supervisado, por lo cual, contamos con el dataset completo, con F(x)=Y desde el inicio.

  1. A la izquierda, en rojo “Pixel Space” tenemos la “x” inicial que entrará en el Encoder de la VAE.
  2. En verde, Espacio Latente, Arriba el Proceso de Difusión, lleva “z” a “zT” agregando ruido a la imagen
  3. En verde, Espacio Latente, Abajo, de derecha a izquierda, entra “zT” a la U-Net e intentará reconvertirla en “z”.
  4. Conditioning, a la derecha, utiliza el modelo CLIP con el texto asociado a la imagen y dirige la salida de la U-Net.
  5. Por último, luego de iterar varias veces la U-Net y obtener una “z buena” (que es la imagen en estado latente), la decodificamos a pixeles utilizando el Decoder de la VAE (en el Pixel Space) y obtendremos una imagen similar a la “x” inicial.

Esta es la arquitectura para entrenar al modelo. Si vas a utilizar la red una vez entrenada, realmente realizaremos el “camino de inferencia“, veamos:

Al hacer la Inferencia, creamos una imagen:

Al momento de hacer la inferencia crearemos una imágen desde ruido! Por eso, el primer paso, es crear una imagen de 512×512 completamente de pixeles aleatorios!

Veamos la gráfica de inferencia que nos propone Stability.ai

Flujo de Inferencia explicada en HuggingFace sobre Stable Diffusion

Entonces, generamos la imagen de ruido y a partir de ella, la pasaremos a la U-Net que junto con el texto de entrada irá condicionando la salida, una y otra vez, intentará “quitar el ruido” para volver a una imagen original inexistente…

¿Te das cuenta? estamos engañando a la red neuronal, para que genere un gráfico que nunca antes existió…

La pobre Red Neuronal, es como si fuera un escultor con un cincel al que le damos un bloque de piedra enorme y le decimos “Quiero a Taylor Swift con un pingüino, hazlo!“.

Entonces, en cada iteración, creará desde el ruido, una imagen

Partimos de una imagen aleatoria completamente con ruido y tras 25 iteraciones la red de Stable Diffusion será capaz de generar una bonita ilustración.

Pero… ¿Qué imágenes puedes crear con Stable Diffusion?

Veamos algunos ejemplos de imágenes creadas por Stable Diffusion para ver si te convenzo de que esto es realmente algo grande… y luego ya puedes decidir si quieres probarlo y hasta instalarlo en tu propio equipo.

Aquí algunas imágenes encontradas en diversos canales:

En Lexica, que por cierto, te recomiendo visitar su web, pues tiene imágenes junto a los prompts para generarlas.

En Instagram

Imágenes encontradas en Reddit

Imágenes encontradas en Twitter

¡Quiero usar Stable Diffusion! ¿Cómo hago?

Puedes pagar por el servicio, ejecutar en la nube ó instalarlo en tu propia computadora.

1-Probarlo gratis, lo primero! (pagar luego…)

Desde la web de los creadores puedes dar tus primeros pasos. Tienes que registrarte y obtienes unos créditos gratuitos, luego que se acaben, tendrás que pagar. Debes entrar en https://beta.dreamstudio.ai/dream

Página de Bienvenida al Dream Studio de Stable Diffusion

Veremos en la parte de abajo, centro la caja de texto donde podemos ingresar el “prompt” con lo que queremos dibujar. Sobre la derecha los parámetros de configuración, que comentaremos luego, pero lo básico es que puedes elegir el tamaño de imagen y cantidad de imágenes a generar.

Ten en cuenta que tienes unos créditos (gratuitos) limitados para utilizar, por lo que debes estar atento a lo que vas consumiendo.

2-Instalar StableDiffusion en tu Computadora

Podemos instalar Stable Difussion en Windows y en Linux con “Instaladores automáticos” siguiendo las instrucciones del repositorio de Automatic1111. Para Windows hay otro instalador aqui .

Puedes instalar en ordenadores Mac (y aprovechar las GPUS de los chips M1 y M2) desde el repositorio de InvokeAI siguiendo las instrucciones para Macintosh.

Si te atreves a instalarlo de manera un poco más “manual”, puedes aventurarte a seguir las instrucciones del Repositorio Oficial de Stable Diffusion. No es difícil, básicamente, si tienes instalado Anaconda en tu ordenador, es clonar el repo y crear el environment de python siguiendo los pasos.

Un paso Clave: descargar el modelo de la red de HuggingFace

Casi todos los modos de instalar que vimos anteriormente, necesitan de un paso manual que es el de obtener y descargar el modelo desde la web de HuggingFace que ocupa 4.27 Gygabytes. Para ello, debes registrarte en HuggingFace e ir a la página del modelo. Deberás aceptar las condiciones de uso, y luego podrás descargar el último modelo, al momento de escribir este artículo es el archivo sd-v1-4.ckpt. Una vez descargado, lo deberás copiar en la carpeta models/ldm/stable-diffusion-1/ y renombrar el archivo como model.ckpt.

Eso es todo! Voilá, crea todas las imágenes que quieras! Tienes el mundo en tus manos!

Tiempos de “Rendering”

Si tienes una tarjeta gráfica con GPU, en mi caso la Nvidia RTX3080 tarda 5 segundos en crear una imágen de 512x512px. Si no tienes tarjeta puedes crear imágenes usando CPU pero tardarán unos 6 minutos (en un ordenador del año 2015 Core i5 y 8GB de memoria). En ordenadores Macbook con chip M2 tarda aproximadamente 1 minuto por imagen.

3-Usar StableDiffusion gratis y con GPU desde la nube de Google Colab

Otra opción para utilizar este genial modelo de forma gratuita es utilizar las notebooks de Google Colab y activar la opción de GPU. Existen varias notebooks compartidas que puedes utilizar como template con la instalación, aquí te recomiendo esta notebook y un hilo en Twitter en español, que te ayuda a seguir los pasos.

¿Cómo Funcionan los Transformers?

Entendiendo los parámetros de entrada de Stable Diffusion

Tanto en la versión web, la de instaladores, manual ó en la nube; contaremos con los mismos parámetros para configurar la red neuronal. Estos son:

  • Alto y Ancho de imagen: deben ser múltiplos de 64, tamaño mínimo de 256 y máximo de 1024px. Sin embargo la recomendación es utilizar 512×512 pues es el tamaño con el que se entrenó la red.
  • Steps: es la cantidad de iteraciones que realizará la U-Net durante la inferencia. Cuanto más iteramos, mayor “ruido” quitaremos de la imagen, es decir, quedará mejor definida. Pero también tardará más tiempo. Teniendo en cuenta el sampler que utilicemos, un valor de entre 25 y 50 estará bien.
  • CFG Scale: este es un valor curioso, pues determina el “grado de libertad” que damos a la propia red para ser creativa. El valor por defecto es 7.5. Si disminuimos el valor, se centrará más en nuestro Prompt. Si aumentamos el valor (más de 10) empezará a improvisar y a hacer dibujos más delirantes y más a su antojo.
  • Número de Imágenes: la cantidad de diversas imágenes que se crearán durante la inferencia. Cuantas más creamos más memoria RAM necesitaremos, tener en cuenta.
  • Sampler: será la función con la que se creará el “denoising” en la U-Net y tiene implicancias en la imagen que se generará. El Sampler más avanzado (de momento) es el DPM2 y necesita más steps para lograr buenos resultados, llevando más tiempo. Curiosamente, el sampler llamado Euler Ancestral es el más básico y logra muy buenas imágenes en unas 20 iteraciones (menor tiempo).
  • Seed ó Semilla: La semilla está relacionada con la imagen con ruido que generamos inicialmente desde donde la red empezará a dibujar. Con una misma semilla podremos replicar una imagen todas la veces que queramos para un mismo prompt. Si no asignamos un valor de semilla, se generará aleatoriamente, obteniendo siempre imágenes distintas para el mismo prompt.

El Prompt Engineering

Se le llama Prompt Engineering al arte de introducir textos que generen buenas imágenes. Lo cierto es que no es tan fácil como parece la creación de imágenes, es decir, la red siempre creará imágenes, pero para que destaquen realmente, hay que agregar las keywords adecuadas. Por suerte ya hay personas que descubrieron muchos de esos tweaks

Los truquillos en el Prompt

Varios exploradores recomiendan seguir una fórmula de tipo:

Tipo imagen – objeto – lugar – tiempo – estilo ó autor

Por ejemplo:

Pintura de un gato con gafas en un teatro, 1960, por Velazquez

Y esto mismo… pero en inglés, obtenemos:

Oil paint of a cat wearing glasses in a theatre, 1960, by Velazquez

Hay algunas palabras que se agregan al final, que son muy útiles, poner “trending on ArtStation”, “highly detailed”, “unreal engine 5”.

Aqui te dejo un enlace a un artículo maravilloso que muestra con ejemplo de muchas de las combinaciones.

imágenes generadas con Imágenes: “img2Img”

Además del txt2Img (que a partir de un texto, generemos una imagen), tenemos otra opción llamada img2img.

Con esta opción ingresamos una imagen creada por nosotros con el “paintbrush” u otra herramienta similar y la utilizaremos como imagen de inicio para generar una nueva imagen. Esto tiene mucha lógica si lo piensas, en vez de empezar con una imagen llena de ruido, le damos unas “guías” a la red neuronal para que pueda crear la imagen. Y los resultados son increíbles!

Imagen de partida para img2img
Imagen obtenida con Img2Img

Por si fuera poco, Inpainting y Outpainting

El Inpainting permite crear una máscara dentro de una imagen y que el modelo dibuje dentro, manteniendo el estilo pictórico y la coherencia.

También existe el llamado OutPainting, que nos permite “extender” una imagen, logrando obras increíbles, será mejor que lo veas!

Resumen y Conclusiones

A estas alturas, espero que estes tan emocionado como yo con esta nueva tecnología y esto es sólo el comienzo! Los modelos de Machine Learning de texto-a-imagen acaban de aterrizar y se perfeccionarán; uno de los puntos fuertes y gran acierto de Stable Diffusion es que al lanzarse a todo el público, logró captar a una gran comunidad de desarrolladores, artistas y curiosos que colaboran y que potencian sus capacidades aún más! Al momento de escribir el artículo, han pasado menos de 2 meses y aparecieron muchísimos proyectos relacionados. Además se comenta que está por aparecer la nueva versión del modelo de pesos entrenado 1.5 dentro de poco. Algunos usuarios hasta crearon videos mediante Stable Diffusion y otros empiezan a mezclar la red con las 3 dimensiones para crear objetos.

En próximos artículos veremos en mayor profundidad y en código Python el uso de redes VAE, U-Net y Transformers.

Hasta pronto!

Material Adicional:

Aquí comparto dos videos muy buenos sobre Arte con IA y otro sobre Stable Diffusion

Otros artículos relacionados de interés:

Suscripción al Blog

Recibe los próximos artículos sobre Machine Learning, estrategias, teoría y código Python en tu casilla de correo!

NOTA: algunos usuarios reportaron que el email de confirmación y/o posteriores a la suscripción entraron en su carpeta de SPAM. Te sugiero que revises y recomiendo que agregues nuestro remitente info @ aprendemachinelearning.com a tus contactos para evitar problemas. Gracias!

El libro del Blog

Si te gustan los contenidos del blog y quieres darme una mano, puedes comprar el libro en papel, ó en digital.

The post Crea imágenes increíbles con Inteligencia Artificial en tu ordenador first appeared on Aprende Machine Learning.

]]>
https://aprendemachinelearning.com/crea-imagenes-stable-diffusion-con-inteligencia-artificial-en-tu-ordenador/feed/ 0 7681
Modelos de Detección de Objetos https://aprendemachinelearning.com/modelos-de-deteccion-de-objetos/ https://aprendemachinelearning.com/modelos-de-deteccion-de-objetos/#respond Fri, 21 Aug 2020 08:00:00 +0000 https://www.aprendemachinelearning.com/?p=6747 Luego de haber hecho un ejercicio Práctico de Detección de objetos en imágenes por medio de redes neuronales, veremos la teoría que hay detrás de estos algoritmos. Para comprender el artículo doy por sentado que ya tienes conocimiento de cómo funcionan las redes neuronales y de la teoría de Clasificación de imágenes. Si no, te […]

The post Modelos de Detección de Objetos first appeared on Aprende Machine Learning.

]]>
Luego de haber hecho un ejercicio Práctico de Detección de objetos en imágenes por medio de redes neuronales, veremos la teoría que hay detrás de estos algoritmos.

Para comprender el artículo doy por sentado que ya tienes conocimiento de cómo funcionan las redes neuronales y de la teoría de Clasificación de imágenes. Si no, te recomiendo que leas primero esos artículos.

Agenda

  • Introducción: ¿Qué es la detección de imágenes?
  • Primera intuición de detección a partir de la clasificación con CNN
  • R-CNN: búsqueda selectiva
    • ¿Cómo funciona R-Cnn?
  • Problemas y mejoras: fast y faster r-cnn
  • Detección Rápida: YOLO
    • ¿Cómo funciona YOLO?
    • Arquitectura de la red Darknet
  • Otras alternativas
    • 2016 – Single Shot Detection
    • 2018 – RetinaNet
    • 2019 – Google Spinet
    • 2020 – Facebook saca del horno DETR
  • Resumen

Introducción: ¿Qué es la detección de imágenes?

Podemos tener la errónea intuición de que la detección de imágenes sea una tarea sencilla, pero veremos que realmente no lo es y de hecho es un gran problema a resolver. Nosotros los humanos podemos ver una foto y reconocer inmediatamente cualquier objeto que contenga de un vistazo rápido, si hay objetos pequeños o grandes, si la foto es oscura ó hasta algo borrosa. Imaginemos un niño escondido detrás de un árbol donde apenas sobresale un poco su cabeza ó un pie.

Para la detección de imágenes mediante Algoritmos de Machine Learning esto implica una red neuronal convolucional que detecte una cantidad limitada (ó específica) de objetos, no pudiendo detectar objetos que antes no hubiera visto, ó si están en tamaños que logra discernir y todas las dificultades de posibles “focos”, rotación del objeto, sombras y poder determinar en qué posición -dentro de la imagen- se encuentra.

Si es difícil con 1 objeto… imagínate con muchos!.

¿En qué consiste la detección de objetos?

Un algoritmo de Machine Learning de detección, para considerarse como tal deberá:

  • Detectar multiples objetos.
  • dar la posición X e Y del objeto en la imagen (o su centro) y dibujar un rectángulo a su alrededor.
  • Otra alternativa es la segmentación de imágenes (no profundizaremos en este artículo).
  • Detectar “a tiempo”… o puede que no sirva el resultado. Esta es una característica que debemos tener en cuenta si por ejemplo queremos hacer detección en tiempo real sobre video.

Nueva Salida

Entonces para entrenar nuestra máquina de manera supervisada deberemos indicar la clase del objeto (por ejemplo perro ó gato) y además la posición dentro de la imagen, X, Y el ancho y alto del objeto.

Y por si esto fuera poco, podrían ser múltiples objetos en la misma imagen, con lo cual para detectar 2 perros en una foto, necesitamos como salida 10 neuronas.

Este es un gran cambio, pues en clasificación de imágenes veníamos acostumbrados a devolver un array con por ejemplo Perro = [1 0] y Gato = [0 1].

La nueva salida deberá contener adicionalmente la posición (por ej. 54,45) y dimensión (por ej. 100,100) de cada clase, resultando en algo mínimo como

  • [1 0 100 100 54 45] pudiendo detectar sólo 1 objeto ó
  • [1 0 100 100 54 45 0 1 200 200 30 25] para 2 objetos.

Primera intuición: detección a partir de la clasificación

Podemos partir de este punto: tenemos una red CNN entrenada para detectar perros y gatos y supongamos que tiene una muy buena taza de aciertos. A esta red le pasamos una imagen nueva y nos devuelve “perro” ó “gato”. Agregaremos una tercera salida “otros” por si le pasamos la foto de algo que no sepa reconocer .

Entre las redes CNN pre-entregadas más conocidas están Alexnet, Resnet, y VGG

Si a nuestra red pre-entrenada, le pasamos una imagen con 2 perros será incapaz de detectarlos, puede que no detecte ni siquiera a uno.

Si le pasamos una imagen con perros y gatos, tampoco los podrá identificar y mucho menos localizar.

Entonces lo que el “sentido común de ingenieros” nos dice es: “vamos a iterar”. Es decir, iteremos un “área reducida” dentro de la foto de izquierda a derecha y de arriba abajo y le aplicamos la CNN pre-entrenada para ver si detecta algo.

Al ir iterando, lograremos detectar los 2 animales de la foto.

La foto original
El resultado deseado
Comenzamos a iterar…
Perro detectado
Otro tamaño de bounding-box…
iteramos de izq-der, arriba abajo…
Gato detectado!

Sin embargo esta solución trae consigo múltiples inconvenientes:

  1. ¿De qué tamaño será la ventana deslizante? y de hecho, podría ser de diversos tamaños.
  2. ¿Cuántos píxeles nos moveremos hacia izquierda (y luego hacia abajo)?
  3. Dependiendo de esos factores, el tiempo de cómputo podría ser muy largo, pues para cada movimiento implica realizar una clasificación individual con la CNN.
  4. Si detectamos algún objeto dentro de la ventana, ¿quiere decir que tengo los valores x e y? No necesariamente.
  5. Si nos movemos apenas pixeles con la ventana, podemos estar detectando al “mismo perro” múltiples veces
  6. Surge una problemática de poder distinguir entre animales si estos se encuentran muy cercanos.
Podemos tener dos cajas que detectan al mismo perro.
Esta detección es correcta, 2 perros: pero podría ocurrir…
…detectar por error a 2 perros dentro de una misma caja

De los puntos 5 y 6 surge la necesidad de crear una nueva métrica específica para la detección de imágenes en donde podamos evaluar al mismo tiempo si la clase de objeto es correcta y si la posición del “bounding box” (X,Y, alto y ancho) es buena. Esa métrica será “mAP“.

A raíz de estos puntos, surgen estrategias para intentar solventarlos. Veamos algunas.

R-CNN: búsqueda selectiva

En 2014 surgen las “Region Based Convolutional Neural Networks” con la siguiente propuesta: primero determinar “regiones de interés” dentro de la imagen (esto es conocido como “selective search”) y luego realizar clasificación de imágenes sobre esas áreas usando una red pre-entrenada.

Esto implica un primer algoritmo sobre la imágen que pueda determinar las áreas de interés que pueden llegar a ser 2000 regiones de diversos tamaños (si había más, se descartan). Luego pasar esas regiones por la CNN y mediante un clasificador binario validar si eran de clases correctas y eliminar las de poca confianza. Finalmente un regresor se encargaría de ajustar correctamente la posición de la localización.

La selección de las regiones podría ser por ejemplo “áreas contiguas con un mismo tono de color” ó detección de líneas que delimiten áreas, ó cambios bruscos en contraste y brillo. Son pasadas “rápidas” sobre una imagen, similar a como lo hace un editor de imágenes.

Fuente:  https://arxiv.org/abs/1311.2524

Para evitar el solapamiento del mismo objeto en diversas áreas se utiliza el concepto de IoU ó “Intersection over Union”.

IoU: nos da un porcentaje de acierto del área de predicción frente a la bounding-box real que queríamos detectar.

El IoU en conjunto con “Non-Máximum-Supression” ayudan a seleccionar las áreas del objeto que queremos localizar.

NMS: nos permite quedarnos de entre muchas cajas que detectaron al mismo objeto y se superponen, con la que mejor se ajusta al resultado. Nos quedamos con la mejor y eliminamos al resto.

A pesar de todas estas mejoras, la detección de objetos sobre una sola imagen podía tomar unas 25 segundos. Y el entrenamiento de la propia red es muy lento.

Mejoras sobre R-CNN: fast y faster R-cnn

Surgen otros 2 algoritmos: fast R-CNN y luego faster R-CNN para intentar mejorar el tiempo de detección.

Fast R-CNN mejora el algoritmo inicial haciendo reutilización de algunos recursos como el de las features extraídas por la CNN agilizando el entreno y detección de las imágenes. Esta nueva red tiene mejoras también en el IOU y en la función de Loss para mejorar el posicionamiento de la “caja delimitante”. Sin embargo no ofrece un aumento dramático de velocidad en el entrenamiento y detección.

Faster R-CNN logra una mejora en velocidad al integrar el algoritmo de “región proposal” sobre la propia CNN. Además aparece el concepto de usar “anchor” fijos, es decir, ciertos tamaños pre calculados para la detección de objetos específicos de la red. Por ejemplo, podemos definir 3 tamaños de ventana en 3 escalas distintas de tamaños, es decir un total de 9 anclas.

Faster-R-CNN. Fuente https://arxiv.org/abs/1506.01497

Mask R-CNN

No entraré en detalle, esta red, intenta hacer uso de las R-CNN pero en vez de detectar el “bounding box” de cada objeto, intentará hacer segmentación de imagen, definiendo la superficie de cada objeto.

Fuente: https://arxiv.org/abs/1703.06870

Detección Rápida: YOLO

En 2016 crean YOLO, una red que quiere decir “You Only Look Once“. Esta red hace una única pasada a la red convolucional y detecta todos los objetos para los que ha sido entrenada para clasificar. Al ser un “sólo cálculo” y sin necesidad de iterar, logra velocidades nunca antes alcanzadas con ordenadores que no tienen que ser tan potentes. Esto permite detección sobre video en tiempo real de cientos de objetos en simultáneo y hasta su ejecución en dispositivos móviles.

¿Cómo funciona YOLO ?

Yolo es una solución que reutiliza varias técnicas que vimos anteriormente con un “twist-plot” final.

Yolo define una grilla de tamaño fijo sobre la imagen de 13×13. Sobre esas celdas intentará detectar objetos valiéndose de anchors fijos, por ejemplo de 3 anclas con 3 tamaños distintos (9 predicciones por cada celda). Hace uso de IoU y Non-Max-supression. También tiene asociada una red de regresión al final para las posiciones de los bounding-boxes.

Yolo utiliza una grilla fija, en este caso de 13×13
Aqui vemos ejemplo de 5 anclas de distintos tamaños

La “grandiosidad” de YOLO consiste en su red CNN. Antes vimos que R-CNN utilizaba algún algoritmo adicional para seleccionar las regiones de interés sobre las que realiza las predicciones. En cambio YOLO, utiliza la misma Red CNN de clasificación con un “truco” por el cual no necesita iterar la grilla de 13×13, si no que la propia red se comporta como si hiciera un especie de “offset” que le permite hacer la detección en simultáneo de las 169 casillas.

YOLO utiliza una red CNN llamada Darknet, aunque también puede ser entrenada con cualquier otra red Convolucional. Al mismo tiempo de entrenarse se crea la red con este <<offset>> que comentaba.

Este video te ayudará comprender el funcionamiento de YOLO, explicado nada más y nada menos que por Andrew Ng.

Además Yolo utiliza las neuronas de tipo convolucional al final de la cadena sin necesidad de hacer la transformación a una red “tradicional”.

Gracias a estos retoques, logra la sorprendente capacidad de casi 60 FPS (cuadros por segundo) en ordenadores normales. Se le critica que si bien es rápida, suele tener menor porcentaje de aciertos frente a las R-CNN.

Pero con el paso del tiempo fueron evolucionando las versiones YoloV2, V3 y recientemente V4 que están enfocadas a mejorar esa precisión de las bounding boxes, a la vez que mantienen su rapidez.

Resultados de YOLOv3 sobre el Dataset COCO.

Arquitectura de la Red

La arquitectura se basa en una red convolucional GoogleNet y consta de 24 capas convolucionales. El autor la bautizó como Darknet. Embebe en su salida tanto la parte que clasifica las imágenes como la de posicionamiento y tamaño de los objetos.

Por ejemplo par el CocoDataset que debe detectar 80 objetos diferentes, tendremos como salida:

Tamaño de grillaCantidad AnclasCantidad de clases Ccore, X, Y, Alto, Ancho
13 * 13* 3 * (80 +* 5)

Para este ejemplo nos dará un array de 43.095 datos siendo el máximo de objetos que puede detectar y localizar 13x13x3 = 507 objetos de 80 clases en la misma foto en una sola pasada. (Realmente hará 13x13x3 x3 tamaños = 1521 predicciones). Sorprendente!.

Crea tu propia red de detección de objetos YOLO siguiendo este ejercicio explicado paso a paso y con todo el código Python en una Jupyter Notebook usando Keras y Tensorflow

Otras Alternativas para Detección

Comentaremos brevemente otras técnicas que surgieron y que también se pueden utilizar.

SSD – Single Shot Detector

Tiene una estructura piramidal en su CNN en la que las capas van disminuyendo gradualmente. Esto le permite poder detectar objetos grandes y pequeños. No utiliza una grilla predefinida, pero cuenta con “anclas” de distintas proporciones que se van escalando a medida que descendemos por la pirámide (mapa de features más pequeños, con anclas proporcionalmente más grandes).

RetinaNet (2018)

RetinaNet también se basa en una estructura de CNN piramidal mejorada para reconocer objetos de diversos tamaños en una sola pasada. Innova con una nueva función de pérdida llamada <<Focal Loss>>.

Google: Spinet (dic 2019)

Google Spinet rompe con la estructura piramidal y propone una arquitectura novedosa llamada “scale-permuted” en la que se alternan diversos tamaños en las convoluciones.

Facebook: DETR (junio 2020)

Facebook propone una “End to End object detection with Transformers“. Es decir, utilizar la más novedosa y efectiva técnica de redes neuronales utilizada en NLP pero aplicada a la detección de imágenes! Muy ingenioso!

Resumen

La tarea de Detección de objetos en imágenes fue impulsora de mejora tanto en redes neuronales convolucionales como en la arquitectura general utilizada poniendo a prueba el valor real del deeplearning, entrelazando redes con funciones específicas.

Los logros obtenidos son enormes, de gran aplicación y como vemos sigue siendo un campo en desarrollo, en donde grandes como Google y Facebook siguen innovando con nuevas propuestas, aún con un mundo bajo Pandemia.

Las aplicaciones que tiene la detección de imágenes van desde seguridad, conducción de coches autónomos hasta salud y poder dar visión -al fin- a los robots 😉

Si te suscribes salvas un gatito (o no)

Recibe los próximos artículos sobre Machine Learning, estrategias, teoría y código Python en tu casilla de correo!

NOTA: algunos usuarios reportaron que el email de confirmación y/o posteriores a la suscripción entraron en su carpeta de SPAM. Te sugiero que revises y recomiendo que agregues nuestro remitente info @ aprendemachinelearning.com a tus contactos para evitar problemas. Gracias!

Aún no realizaste el ejercicio práctico de detección de objetos con Python, Keras y Tensorflow? Anímate!

El libro del Blog

Si te gustan los contenidos del blog puedes comprar el libro en papel ó en

formato digital (el precio lo pones tú!)…

The post Modelos de Detección de Objetos first appeared on Aprende Machine Learning.

]]>
https://aprendemachinelearning.com/modelos-de-deteccion-de-objetos/feed/ 0 6747
Detección de Objetos con Python https://aprendemachinelearning.com/deteccion-de-objetos-con-python-yolo-keras-tutorial/ https://aprendemachinelearning.com/deteccion-de-objetos-con-python-yolo-keras-tutorial/#comments Wed, 24 Jun 2020 09:16:50 +0000 https://www.aprendemachinelearning.com/?p=7262 Crea tu propia red neuronal convolucional para detección de objetos lego con este simpático tutorial paso a paso

The post Detección de Objetos con Python first appeared on Aprende Machine Learning.

]]>
En este artículo podrás ver de manera práctica cómo crear tu propio detector de objetos que podrás utilizar con imagenes estáticas, video o cámara. Avanzaremos paso a paso en una Jupyter Notebook con el código completo usando redes neuronales profundas con Keras sobre Tensorflow.

Antes de empezar te recomiendo que leas mis artículos anteriores sobre Visión Artificial, que te ayudarán con las bases teóricas sobre las que nos apoyamos en este ejercicio:

Agenda

Tenemos mucho por delante! Antes que nada debo aclarar que próximamente un nuevo artículo explicará toda la teoría que hoy aplicaremos, pero mientras llega… pasemos a la acción!

  • ¿En qué consiste la Detección Yolo?
    • Algunos parámetros de la red
    • El proyecto propuesto
  • Lo que tienes que instalar (y todo el material)
  • Crear un dataset: Imágenes y Anotaciones
    • Recomendaciones para la imágenes
    • Anotarlo todo
    • El lego dataset
  • El código Python
    • Leer el dataset
    • Train y Validación
    • Data Augmentation
    • Crear la red YOLO
    • Crear la red de Detección
    • Generar las Anclas
    • Entrenar
    • Revisar los Resultados
    • Probar la red!
  • Conclusiones
  • Material Adicional

¿En qué consiste la detección YOLO?

Vamos a hacer un detector de objetos en imágenes utilizando YOLO, un tipo de técnica muy novedosa (2016), acrónimo de “You Only Look Once” y que es la más rápida del momento, permitiendo su uso en video en tiempo real.

Esta técnica utiliza un tipo de red Neuronal Convolucional llamada Darknet para la clasificacion de imágenes y le añade la parte de la detección, es decir un “cuadradito” con las posiciones x e y, alto y ancho del objeto encontrado.

La dificultad de esta tarea es enorme: poder localizar las áreas de las imágenes, que para una red neuronal es tan sólo una matriz de pixeles de colores, posicionar múltiples objetos y clasificarlos. YOLO lo hace todo “de una sola pasada” a su red convolucional. En resultados sobre el famoso COCO Dataset clasifica y detecta 80 clases de objetos distintos y etiquetar y posicionar hasta 1000 objetos (en 1 imagen!)

NOTA PARA los Haters del ML (si es que los hay): Este código se basa en varios trozos de código de diversos repos de Github y estaré usando una arquitectura de YOLOv2 aunque sé que es mejor la versión 3 (y de hecho está por salir Yolo v4)… pero recuerden que este artículo es con fines didácticos. No me odies y sé comprensivo, toma tu pastilla todas las noches, gracias.

Aunque ahondaré en la Teoría en un próximo artículo, aquí comentaré varios parámetros que manejaremos con esta red y que debemos configurar.

(Algunos) Parámetros de la red

  • Tamaño de imagen que procesa la red: este será fijo, pues encaja con el resto de la red y es de 416 pixeles. Todas las imágenes que le pasemos serán redimensionadas antes de entrar en la red.
  • Cantidad de cajas por imagen: Estás serán la cantidad de objetos máximos que queremos detectar.
  • etiquetas: estas serán las de los objetos que queramos detectar. En este ejemplo sólo detectaremos 1 tipo de objeto, pero podrían ser múltiples.
  • epochs: la cantidad de iteraciones sobre TODO el dataset que realizará la red neuronal para entrenar. (Recuerda, que a muchas épocas tardará más tiempo y también el riesgo de overfitting)
  • train_times: este valor se refiera a la cantidad de veces de entrenar una MISMA imagen. Esto sirve sobre todo en datasets pequeños, además que haremos algo de data augmentation sobre las imágenes cada vez.
  • saved_weights_name: una vez entrenada la red, guardaremos sus pesos en este archivo y lo usaremos para hacer las predicciones.

El proyecto Propuesto: Detectar personajes de Lego

Será porque soy padre, ó será porque soy Ingeniero… al momento de pensar en un objeto para detectar se me ocurrió: Legos! ¿Quien no tiene legos en su casa?… Por supuesto que puedes crear tu propio dataset de imagenes y anotaciones xml para detectar el ó los objetos que tu quieras.

Lo que tienes que instalar

Primero que nada te recomiendo que crees un nuevo Environment de Python 3.6.+ e instales estas versiones de librerías que usaremos.

En consola escribe:

python -m venv detectaEnv

Y luego lo ACTIVAS para usarlo en windows con:

detectaEnv\Scripts\activate.bat

ó en Linux / Mac con:

source detectaEnv/bin/activate

y luego instala los paquetes:

pip install tensorflow==1.13.2
pip install keras==2.0.8
pip install imgaug==0.2.5
pip install opencv-python
pip install h5py
pip install tqdm
pip install imutils

Aclaraciones: usamos una versión antigua de Tensorflow. Si tienes GPU en tu máquina, puedes usar la versión apropiada de Tensorflow (y CUDA) para aprovecharlo.

Si vas a crear tu propio dataset -como se explica a continuación-, deberás instalar LabelImg, que requiere:

pip install PyQt5
pip install lxml
pip install labelImg

Si no, puedes usar el dataset de legos que provee el blog y saltarte la parte de crear el dataset.

Otros archivos que deberás descargar:

Crea un dataset: Imágenes y Anotaciones

Vale, pues es hora de crear un repositorio de miles de imágenes para alimentar tu red de detección.

En principio te recomendaría que tengas al menos unas 1000 imágenes de cada clase que quieras detectar. Y de cada imagen deberás tener un archivo xml con un formato específico -que en breve comentaré- con la clase y la posición de cada objeto. Al detectar imágenes podemos tener más de un objeto, entonces puedes tener imágenes que tienen a más de un objeto.

Recomendaciones para las imágenes:

Algunas recomendaciones para la captura de imágenes: si vas a utilizar la cámara de tu móvil, puede que convenga que hagas fotos con “pocos megapixeles”, pues si haces una imagen de 4K de 5 Megas, luego la red neuronal la reducirá a 416 pixeles de ancho, por lo que tendrás un coste adicional de ese preprocesado en tiempo, memoria y CPU.

Intenta tener fotos del/los objetos con distintas condiciones de luz, es decir, no tengas imágenes de gatitos “siempre al sol”. Mejor serán imágenes de interior, al aire libre, con poca luz, etc.

Intenta tener imágenes “torcidas”(rotadas), parciales y de distintos tamaños del objeto. Si sólo tienes imágenes en donde tu objeto supongamos que “mide 100 pixeles” mal-acostumbrarás la red y sólo detectará en imágenes cuando sea de esas dimensiones (peligro de overfitting).

Variaciones del mismo objeto: Si tu objeto es un gato, intenta clasificar gatos de distintos colores, razas y en distintas posiciones, para que la red convolucional pueda generalizar el conocimiento.

Anotarlo todo

Muy bien, ya tienes tus imágenes hechas y guardadas en un directorio.

Ahora deberás crear un archivo XML donde anotarás cada objeto, sus posiciones x,y su alto y ancho.

El xml será de este tipo:

Y lo puedes hacer a mano… ó puedes usar un editor como labelImg.

Si lo instalaste mediante Pip, puedes ejecutarlo simplemente poniendo en línea de comandos del environment labelImg. Se abrirá el editor visual y podrás:

  • Seleccionar un directorio como fuente de imágenes.
  • Seleccionar un directorio donde guardará los xml.

En el editor deberás crear una caja (bounding-box) sobre cada objeto que quieras detectar en la imagen y escribir su nombre (clase). Cuando terminas le das a Guardar y Siguiente!

El lego dataset

Puedes utilizar el Lego-Dataset de imágenes y anotaciones (170MB) que creé para este artículo y consta de 300 imágenes. Son fotos tomadas con móvil de diversos personajes lego. Realmente son 100 fotos y 200 variaciones en zoom y recortes. Y sus correspondientes 300 archivos de anotaciones xml.

Dicho esto, recuerda que siempre es mejor más y más imágenes para entrenar.

El código Python

Usaremos Keras sobre Tensorflow para crear la red!, manos a la obra.

En el artículo copiaré los trozos de código más importantes, siempre puedes descargar la notebook Jupyter con el código completo desde Github.

Leer el Dataset

Primer paso, será el de leer las anotaciones xml que tenemos creadas en un directorio e ir iterando los objetos para contabilizar las etiquetas.

NOTA: en este ejemplo, declaro la variable labels con 1 sóla clase “lego”, pero si quieres identificar más podrías poner [“perro”,”gato”] ó lo que sea que contenga tu dataset.

xml_dir = "annotation/lego/"
img_dir = "images/lego/"
labels = ["lego"]
tamanio = 416
mejores_pesos = "red_lego.h5"

def leer_annotations(ann_dir, img_dir, labels=[]):
    all_imgs = []
    seen_labels = {}
    
    for ann in sorted(os.listdir(ann_dir)):
        img = {'object':[]}

        tree = ET.parse(ann_dir + ann)
        
        for elem in tree.iter():
            if 'filename' in elem.tag:
                img['filename'] = img_dir + elem.text
            if 'width' in elem.tag:
                img['width'] = int(elem.text)
            if 'height' in elem.tag:
                img['height'] = int(elem.text)
            if 'object' in elem.tag or 'part' in elem.tag:
                obj = {}
                
                for attr in list(elem):
                    if 'name' in attr.tag:
                        obj['name'] = attr.text

                        if obj['name'] in seen_labels:
                            seen_labels[obj['name']] += 1
                        else:
                            seen_labels[obj['name']] = 1
                        
                        if len(labels) > 0 and obj['name'] not in labels:
                            break
                        else:
                            img['object'] += [obj]
                            
                    if 'bndbox' in attr.tag:
                        for dim in list(attr):
                            if 'xmin' in dim.tag:
                                obj['xmin'] = int(round(float(dim.text)))
                            if 'ymin' in dim.tag:
                                obj['ymin'] = int(round(float(dim.text)))
                            if 'xmax' in dim.tag:
                                obj['xmax'] = int(round(float(dim.text)))
                            if 'ymax' in dim.tag:
                                obj['ymax'] = int(round(float(dim.text)))

        if len(img['object']) > 0:
            all_imgs += [img]
                        
    return all_imgs, seen_labels

train_imgs, train_labels = leer_annotations(xml_dir, img_dir, labels)
print('imagenes',len(train_imgs), 'labels',len(train_labels))

Train y Validación

Separaremos un 20% de las imágenes y anotaciones para testear el modelo. En este caso se utilizará el set de Validación al final de cada época para evaluar métricas, pero nunca se usará para entrenar.

¿Porque usar Train, test y validación?

train_valid_split = int(0.8*len(train_imgs))
np.random.shuffle(train_imgs)
valid_imgs = train_imgs[train_valid_split:]
train_imgs = train_imgs[:train_valid_split]
print('train:',len(train_imgs), 'validate:',len(valid_imgs))

Data Augmentation

El Data Augmentation sirve para agregar pequeñas alteraciones ó cambios a las imágenes de entradas aumentando virtualmente nuestro dataset de imágenes y mejorando la capacidad de la red para detectar objetos. Para hacerlo nos apoyamos sobre una librería llamada imgaug que nos brinda muchas funcionalidades como agregar desenfoque, agregar brillo, ó ruido aleatoriamente a las imágenes. Además podemos usar OpenCV para voltear la imagen horizontalmente y luego recolocar la “bounding box”.

### FRAGMENTO del código

iaa.OneOf([
    iaa.GaussianBlur((0, 3.0)), # blur images
    iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel
    iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel
    ]),
    iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
    iaa.OneOf([
        iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
        ]),
    iaa.Add((-10, 10), per_channel=0.5), # change brightness of images
    iaa.Multiply((0.5, 1.5), per_channel=0.5), # change brightness of images
    iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast

Crear la Red de Clasificación

La red CNN es conocida como Darknet y está compuesta por 22 capas convolucionales que básicamente aplican BatchNormalizarion, MaxPooling y activación por LeakyRelu para la extracción de características, es decir, los patrones que encontrará en las imágenes (en sus pixeles) para poder diferenciar entre los objetos que queremos clasificar.

Va alternando entre aumentar y disminuir la cantidad de filtros y kernel de 3×3 y 1×1 de la red convolucional.

#### FRAGMENTO de código, solo algunas capas de ejemplo

# Layer 1
x = Conv2D(32, (3,3), strides=(1,1), padding='same', name='conv_1', use_bias=False)(input_image)
x = BatchNormalization(name='norm_1')(x)
x = LeakyReLU(alpha=0.1)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)

# Layer 2
x = Conv2D(64, (3,3), strides=(1,1), padding='same', name='conv_2', use_bias=False)(x)
x = BatchNormalization(name='norm_2')(x)
x = LeakyReLU(alpha=0.1)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)

# Layer 3
x = Conv2D(128, (3,3), strides=(1,1), padding='same', name='conv_3', use_bias=False)(x)
x = BatchNormalization(name='norm_3')(x)
x = LeakyReLU(alpha=0.1)(x)

No olvides descargar y copiar en el mismo directorio donde ejecutes la notebook los pesos de la red Darknet, pues en este paso se cargaran para incializar la red.

Crear la Red de Detección

Esta red, utilizará la anterior (clasificación) y utilizará las features obtenidas en sus capas convolucionales de salida para hacer la detección de los objetos, es decir las posiciones x e y, alto y ancho. Para ello se valdrá de unas Anclas, en nuestro caso serán 5. Las Anclas son unas “ventanas”, o unas bounding boxes de distintos tamaños, pequeños, mediano grande, rectangulares o cuadrados que servirán para hacer “propuestas de detección”.

### Fragmento de código

        input_image     = Input(shape=(self.input_size, self.input_size, 3))
        self.true_boxes = Input(shape=(1, 1, 1, max_box_per_image , 4))  

        self.feature_extractor = FullYoloFeature(self.input_size)

        print(self.feature_extractor.get_output_shape())    
        self.grid_h, self.grid_w = self.feature_extractor.get_output_shape()        
        features = self.feature_extractor.extract(input_image)            

        # make the object detection layer
        output = Conv2D(self.nb_box * (4 + 1 + self.nb_class), 
                        (1,1), strides=(1,1), 
                        padding='same', 
                        name='DetectionLayer', 
                        kernel_initializer='lecun_normal')(features)
        output = Reshape((self.grid_h, self.grid_w, self.nb_box, 4 + 1 + self.nb_class))(output)
        output = Lambda(lambda args: args[0])([output, self.true_boxes])

        self.model = Model([input_image, self.true_boxes], output)

En total, la red YOLO crea una grilla de 13×13 y en cada una realizará 5 predicciones, lo que da un total de 845 posibles detecciones para cada clase que queremos detectar. Si tenemos 10 clases esto serían 8450 predicciones, cada una con la clase y sus posiciones x,y ancho y alto. Lo más impresionante de esta red YOLO es que lo hace todo de 1 sólo pasada! increíble!

Para refinar el modelo y que detecte los objetos que hay realmente, utilizará dos funciones con las cuales descartará áreas vacías y se quedará sólo con las mejores propuestas. Las funciones son:

  • IOU: Intersection Over Union, que nos da un porcentaje de acierto del área de predicción contra la “cajita” real que queremos predecir.
  • Non Maximum suppression: nos permite quedarnos de entre nuestras 5 anclas, con la que mejor se ajusta al resultado. Esto es porque podemos tener muchas áreas diferentes propuestas que se superponen. De entre todas, nos quedamos con la mejor y eliminamos al resto.

Entonces, pensemos que si en nuestra red de detección de 1 sóla clase detectamos 1 lego, esto quiere decir que la red descarto a las 844 restantes propuestas.

Prometo más teoría y explicaciones en un próximo artículo 🙂

NOTA: por más que para explicar lo haya separado en 2 redes (red YOLO y red de detección), realmente es 1 sóla red convolucional, pues están conectadas y al momento de entrenar, los pesos se ajustan “como siempre” con el backpropagation.

Generar las Anclas

Como antes mencioné, la red utiliza 5 anclas para cada una de las celdas de 13×13 para realizar las propuestas de predicción. Pero… ¿qué tamaño tienen que tener esas anclas? Podríamos pensar en 5 tamaños distintos, algunos pequeños, otros más grandes y que se adapten a las clases que queremos detectar. Por ejemplo, el ancla para detectar siluetas de personas serán rectangulares en vertical.

Según los objetos que quieras detectar, ejecutaremos un pequeño script que utiliza k-means y determina los mejores 5 clusters (de dimensiones) que se adapten a tu dataset.

Entrenar la Red Neuronal!

Basta de bla bla… y a entrenar la red. Como dato informativo, en mi ordenador Macbook de 4 núcleos y 8GB de RAM, tardó 7 horas en entrenar las 300 imágenes del dataset de lego con 7 épocas y 5 veces cada imagen con data augmentation, (en total se procesan 1500 imágenes en cada epoch).

yolo = YOLO(input_size          = tamanio, 
            labels              = labels, 
            max_box_per_image   = 5,
            anchors             = anchors)

Al finalizar verás que se ha creado un archivo nuevo llamado “red_lego.h5” que contiene los pesos de tu nueva red convolucional creada.

Revisar los Resultados

Los resultados vienen dados por una métrica llamada mAP y que viene a ser un equivalente a un F1-Score pero para imágenes, teniendo en cuenta los falsos positivos y negativos. Ten en cuenta que si bien la ventaja de YOLO es la detección en tiempo real, su contra es que es “un poco” peor en accuracy que otras redes -que son lentas-, lo podemos notar al ver que las “cajitas” no se ajustan del todo con el objeto detectado ó puede llegar a confundir la clase que clasificó. Con el Lego Dataset he logrado un bonito 63 de mAP… no está mal. Recordemos que este valor de mAP se obtiene al final de la última Epoch sobre el dataset de Validación (que no se usa para entrenar) y en mi caso eran -apenas- 65 imágenes.

Probar la Red

Para finalizar, podemos probar la red con imágenes nuevas, distintas que no ha visto nunca, veamos cómo se comporta la red!

Crearemos unas funciones de ayuda para dibujar el rectángulo sobre la imagen original y guardar la imagen nueva:

def draw_boxes(image, boxes, labels):
    image_h, image_w, _ = image.shape

    for box in boxes:
        xmin = int(box.xmin*image_w)
        ymin = int(box.ymin*image_h)
        xmax = int(box.xmax*image_w)
        ymax = int(box.ymax*image_h)

        cv2.rectangle(image, (xmin,ymin), (xmax,ymax), (0,255,0), 3)
        cv2.putText(image, 
                    labels[box.get_label()] + ' ' + str(box.get_score()), 
                    (xmin, ymin - 13), 
                    cv2.FONT_HERSHEY_SIMPLEX, 
                    1e-3 * image_h, 
                    (0,255,0), 2)
        
    return image

Utilizaremos el archivo de pesos creado al entrenar, para recrear la red (esto nos permite poder hacer predicciones sin necesidad de reentrenar cada vez).

mejores_pesos = "red_lego.h5"
image_path = "images/test/lego_girl.png"

mi_yolo = YOLO(input_size          = tamanio, 
            labels              = labels, 
            max_box_per_image   = 5,
            anchors             = anchors)

mi_yolo.load_weights(mejores_pesos)

image = cv2.imread(image_path)
boxes = mi_yolo.predict(image)
image = draw_boxes(image, boxes, labels)

print('Detectados', len(boxes))

cv2.imwrite(image_path[:-4] + '_detected' + image_path[-4:], image)

Como salida tendremos una nueva imagen llamada “lego_girl_detected.png” con la detección realizada.

Esta imagen me fue prestada por @Shundeez_official, muchas gracias! Les recomiendo ver su cuenta de Instagram que es genial!

Imágenes pero también Video y Cámara!

Puedes modificar levemente la manera de realizar predicciones para utilizar un video mp4 ó tu cámara web.

Para aplicarlo a un video:

from tqdm import *

video_path = 'lego_movie.mp4'
video_out = video_path[:-4] + '_detected' + video_path[-4:]
video_reader = cv2.VideoCapture(video_path)

nb_frames = int(video_reader.get(cv2.CAP_PROP_FRAME_COUNT))
frame_h = int(video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_w = int(video_reader.get(cv2.CAP_PROP_FRAME_WIDTH))

video_writer = cv2.VideoWriter(video_out,
                       cv2.VideoWriter_fourcc(*'MPEG'), 
                       50.0, 
                       (frame_w, frame_h))

for i in tqdm(range(nb_frames)):
    _, image = video_reader.read()
    
    boxes = yolo.predict(image)
    image = draw_boxes(image, boxes, labels)

    video_writer.write(np.uint8(image))

video_reader.release()
video_writer.release()

Luego de procesar el video, nos dejará una versión nueva del archivo mp4 con la detección que realizó cuadro a cuadro.

Y para usar tu cámara: (presiona ‘q’ para salir)

win_name = 'Lego detection'
cv2.namedWindow(win_name)

video_reader = cv2.VideoCapture(0)

while True:
    _, image = video_reader.read()
    
    boxes = yolo.predict(image)
    image = draw_boxes(image, boxes, labels)

    cv2.imshow(win_name, image)

    key = cv2.waitKey(1) & 0xFF
    if key == ord('q'):
        break

cv2.destroyAllWindows()
video_reader.release()

Conclusiones y…

Esta fue la parte práctica de una de las tareas más interesantes dentro de la Visión Artificial, que es la de lograr hacer detección de objetos. Piensen todo el abanico de posibilidades que ofrece poder hacer esto! Podríamos con una cámara contabilizar la cantidad de coches y saber si hay una congestión de tráfico, podemos contabilizar cuantas personas entran en un comercio, si alguien toma un producto de una estantería y mil cosas más! Ni hablar en robótica, donde podemos hacer que el robot vea y pueda coger objetos, ó incluso los coches de Tesla con Autopilot… Tiene un gran potencial!

Además en este artículo quería ofrecer el código que te permita entrenar tus propios detectores, para los casos de negocio que a ti te importan.

En el próximo artículo comento sobre la Teoría que hoy pusimos en práctica sobre Detección de Objetos.

1 millón de Gracias!

Este artículo es muy especial para mi, por varias cosas: una es que el Blog ha conseguido la marca de 1.000.000 de visitas en estos 2 años y medio de vida y estoy muy contento de seguir escribiendo -a pesar de muchas adversidades de la vida-. Gracias por las visitas, por leerme, por los comentarios alentadores y el apoyo!

Libro en proceso

Con este artículo y por el hito conseguido me animo a lanzar un primer borrador de lo que será “El libro del blog” y que algún día completaré y publicaré Ya publicado, en papel y digital!!.

Los invito a todos a comprarlo si pueden colaborar con este proyecto y también está la opción de conseguirlo gratis, porque sé que hay muchos lectores que son estudiantes y puede que no tengan medios ó recursos para pagar y no por eso quiero dejar de compartirlo.

Todos los que lo adquieran ahora, podrán seguir obteniendo todas las actualizaciones que iré haciendo con el tiempo y descargar el material extra.

Suscripción al Blog

Recibe los próximos artículos sobre Machine Learning, estrategias, teoría y código Python en tu casilla de correo!

NOTA: algunos usuarios reportaron que el email de confirmación y/o posteriores a la suscripción entraron en su carpeta de SPAM. Te sugiero que revises y recomiendo que agregues nuestro remitente a tus contactos para evitar problemas. Gracias!

Todo el Material

Recuerda todo lo que tienes que descargar:

Y enlaces a otros artículos de interés:

The post Detección de Objetos con Python first appeared on Aprende Machine Learning.

]]>
https://aprendemachinelearning.com/deteccion-de-objetos-con-python-yolo-keras-tutorial/feed/ 76 7262
Pronóstico de Ventas con Redes Neuronales – Parte 2 https://aprendemachinelearning.com/pronostico-de-ventas-redes-neuronales-python-embeddings/ https://aprendemachinelearning.com/pronostico-de-ventas-redes-neuronales-python-embeddings/#comments Thu, 14 Mar 2019 09:00:00 +0000 https://www.aprendemachinelearning.com/?p=6692 Mejora del modelo de Series Temporales con Múltiples Variables y Embeddings Este artículo es la continuación del post anterior “Pronóstico de Series Temporales con Redes Neuronales en Python” en donde vimos cómo a partir de un archivo de entrada con las unidades vendidas por una empresa durante años anteriores, podíamos estimar las ventas de la […]

The post Pronóstico de Ventas con Redes Neuronales – Parte 2 first appeared on Aprende Machine Learning.

]]>
Mejora del modelo de Series Temporales con Múltiples Variables y Embeddings

Este artículo es la continuación del post anterior “Pronóstico de Series Temporales con Redes Neuronales en Python” en donde vimos cómo a partir de un archivo de entrada con las unidades vendidas por una empresa durante años anteriores, podíamos estimar las ventas de la próxima semana. Continuaremos a partir de ese modelo -por lo que te recomiendo leer antes de continuar- y haremos propuestas para mejorar la predicción.

Breve Repaso de lo que hicimos

En el modelo del capitulo anterior creamos una Red Neuronal MLP (Multilayered Perceptron) feedforward de pocas capas, y el mayor trabajo que hicimos fue en los datos de entrada. Puesto que sólo tenemos un archivo csv con 2 columnas: fecha y unidades vendidas lo que hicimos fue transformar esa entrada en un “problema de aprendizaje supervisado“. Para ello, creamos un “nuevo archivo” de entrada con 7 columnas en donde poníamos la cantidad de unidades vendidas en los 7 días anteriores y de salida la cantidad de unidades vendidas en “la fecha actual”. De esa manera alimentamos la red y ésta fue capaz de realizar pronósticos aceptables. Sólo utilizamos la columna de unidades. Pero no utilizamos la columna de fecha. ¿Podría ser la columna de fecha un dato importante? ¿podría mejorar nuestra predicción de ventas?

Mejoras al modelo de Series Temporales

Esto es lo que haremos hoy: propongo 2 nuevos modelos con Redes Neuronales Feedforward para intentar mejorar los pronósticos de ventas:

  • Un primer modelo tomando la fecha como nueva variable de entrada valiosa y que aporta datos.
  • Un segundo modelo también usando la fecha como variable adicional, pero utilizándola con Embeddings… y a ver si mejora el pronóstico.

Por lo tanto explicaremos lo qué son los embeddings utilizados en variables categóricas (se utiliza mucho en problemas de Procesamiento del Lenguaje Natural NLP para modelar).

Para estos modelos propuestos haremos la transformación a “problema de aprendizaje supervisado”. Para ello usaremos la misma función series_to_supervised() de la web machinelearningmastery como en el artículo anterior.

Primer Mejora: Serie Temporal de múltilples Variables

Puede que el “ejemplo clásico” para comprender lo que son las Series Temporales de Múltiples Variables sea el pronóstico del tiempo, en donde tenemos varias “columnas de entrada” con la temperatura, la presión atmosférica, humedad. Con esas tres variables tendremos una mejor predicción de “la temperatura de mañana” que si tan sólo usásemos una sola feature.

Usar Fecha como variable de entrada

Como solamente tenemos un dato de entrada (las unidades vendidas en el día), intentaremos enriquecer a la red con más entradas. Para ello, usaremos la fecha. ¿Pero cómo? Bueno, aprovecharemos que podemos saber cada día que hubo ventas si fue un lunes, martes… por ejemplo algunos comercios venden más los viernes y sábados. También, como vimos que en cuanto a estacionalidad, en verano (europeo) subían las ventas, la red neuronal debería percatarse de eso y “mejorar su puntería” entendiendo que eso ocurre en los meses 7 y 8 (¿lo hará..?). No agregaré los años, pues sólo tenemos 2017 y 2018 (muy pocos), pero si tu cuentas con un dataset con muchos años, sería bueno agregar como entrada también los años.

En Limpio: Usaremos el día como variable categórica con valores de 0 a 6 indicando día de semana y usaremos el número de mes como otra variable categórica. La “intuición” es que la red <<entenderá>> las estacionalidades dadas entre semana y mensuales.

Segunda mejora: Embeddings en variables categóricas

Bien, para el segundo modelo, utilizaremos embeddings en las variables categóricas, es decir, en la columna de día y de mes. Los valores de día van del 0 al 6 representando los días de la semana. Pero no quiere decir que el día 6 “vale” más que el día 0. Son identificadores. No tendría sentido decir que jueves es mayor que domingo. Sin embargo la red neuronal esto no lo sabe y podría interpretar erróneamente esos valores (categóricos)… Con los meses lo mismo; van del 1 al 12 pero no quiere decir que “diciembre valga más que agosto”. Y de hecho, sabemos en la práctica para este ejercicio, que realmente en julio y agosto, es cuando más aumentan las ventas. Para intentar resolver esta problemática, es que aparecen los Embeddings.

¿Qué son los Embeddings? ¿por qué? ¿para qué?

La traducción al español de “Embed” es Incrustar… y esto a simple vista no nos ayuda mucho. Google lo traduce en uno de sus tutoriales como “incorporaciones“. Los embeddings son una manera de dar valoración útil- a datos categóricos. Para ello asignaremos una profundidad a cada “identificador”, es decir un vector con valores continuos inicialmente aleatorios. Esos valores se ajustarán con backpropagation al igual que nuestra red neuronal. Y finalmente nuestros datos categóricos quedan enriquecidos y dejan de ser “lunes” para ser unos vectores con valores que “significan algo”. ¿Qué significan? para simplificar e intentar entenderlo podemos decir que esos vectores “acercan identificadores similares entre sí y distancia a los opuestos”. Un ejemplo: cuando se utiliza en Natural Language Processing (NLP) con un gran número de palabras, los Embeddings logran hacer que palabras sobre sentimientos positivos -“alegría”,”felicidad”- queden cercanas pero distanciadas de las que significan sentimientos negativos “odio”,”tristeza”.

Hay un caso también muy usado llamado: Filtrado colaborativo en el cual se crea un motor de recomendaciones de películas. En ese ejemplo, se sitúan en un espacio vectorial las películas infantiles en extremo y las de adultos en otro. A su vez, otra coordenada indica si la película es “más comercial/taquillera” ó más “artística”.

En este caso “simplificado” los Embeddings se pueden ver como vectores de coordenadas (x,y) que acercan películas similares en 2 dimensiones y a su vez quedan distanciadas de Identificadores opuestos.

Sobre la dimensionalidad de los Embeddings

Es bueno usar muchas dimensiones (profundidad) para modelar nuestras variables categóricas. Pero ojo!, si tiene demasiadas, puede ocurrir overfitting. Entonces habrá que hacer prueba y error. Hay una regla que dice que hay que usar “una cuarta parte” del tamaño de la variable categórica: si tenemos 100 identificadores, usaremos como profundidad 25. En el curso de Fast.ai recomiendan un máximo de 50 ó “la cantidad de elementos categóricos más uno, dividido dos” (si es menor a 50). Pero siempre dependerá del caso.

Conclusión de Embeddings

Al asignarle vectores con valor numérico continuo a entradas categóricas , estos terminan funcionando como “una mini red neuronal” dentro de la red principal. Aprenden con backpropagation. Y resuelven como valores continuos esos identificadores discretos, acentuando su valor intrínseco.

Una ventaja de usar Embeddings es que se pueden reutilizar. Una vez entrenados podemos guardarlos para utilizarlos en otra red. Gracias a esto es que encontramos archivos de Embeddings con millones de palabras “ya entrenadas” por Google, listos para descargar y usar.

¿Y el código fuente de los modelos? Quiero Python! Exijo mi Jupyter Notebook!

Dejaré enlace a los códigos, pues me quiero centrar un más en las comparaciones y conclusiones de cada modelo, y no tanto en su implementación (cualquier duda, me escriben comentarios!). Aquí los enlaces de las 3 notebooks puedes abrirlas en pestañas nuevas

Los Resultados de los 3 modelos: Comparemos

Para intentar que las comparaciones sean lo más “justas” posibles, utilizaremos en las 3 redes neuronales las mismas funciones de activación (tanh), misma optimización (Adam) y métricas loss y score (mean_absolute_error y mean_squared_error). Además en todos los casos ejecutaremos 40 EPOCHS.

Por comodidad llamaremos a los 3 modelos:

  1. Serie Temporal de 1 variable = ST1
  2. Serie Temporal de Multiples Variables = STMV
  3. Serie Temporal con Embeddings = STE

Comparemos las Métricas

Vemos los valores finales de las métricas tras las 40 EPOCHS

Modelolossval_lossMSEval_MSE
1)ST10.16820.14020.05550.0353
2)STMV0.15830.14280.05100.0429
3)STE0.10860.09540.02270.0199

El modelo ST1 y STMV quedan prácticamente iguales. Es decir que tras agregar las variables de fecha no pareciera haber mejoría en las métricas. Sin embargo el modelo con embeddings sí que logra una mejora algo más evidente: el validation_loss pasa de 0.14 a 0.09 y el validation_MSE de 0.04 a 0.02.

Comparemos Gráficas de Pérdida (loss)

En las tres gráficas vemos que la métrica de loss en los sets de entrenamiento y validación descienden y se mantiene estables. Bueno, en la del segundo modelo STMV la curva de validación es algo errática. Las curvas del modelo 1 y 2 se mantienen sobre el 0.15 mientras que la del 3er modelo desciende algo más en torno del 0.10

Modelo 1) ST1: En azul el Entrenamiento y naranja el set de Validación.
Modelo 2) STMV: En azul el Entrenamiento y naranja el set de Validación.
Modelo 3) STE: En azul el Entrenamiento y naranja el set de Validación.

Comparemos las Gráficas de Accuracy

Utilizamos la métrica de MSE, y vemos que nuevamente el modelo 1 y 2 se comportan similar y se sitúan sobre el 0.06 y el modelo 3 con Embeddings desciende hasta el 0.02 (indicando una mejora) .

Comparamos los pronósticos y sus aciertos

Vamos a hacer una comparación visual, de los pronósticos realizados sobre el set de validación y marcar los aciertos. En azul, los puntos reales y en naranja las predicciones.

Modelo 1) ST1: con aciertos, pero pronóstico conservador
Modelo 2) STMV: Bastante similar al modelo 1 pero con algo mayor de amplitud.
Modelo 3) STE: Los Embeddings proveen mayor flexibilidad a la curva de pronóstico y aciertos.

Podemos ver que la primera red es “más conservadora”, manteniéndoselo en “la media” de 200, sin picos bruscos. El segundo modelo tiene algo más de amplitud en sus predicciones y la red neuronal que mejor se comporta es la tercera, que evidentemente gracias a los Embeddings logra pronosticar mejor los valores y vemos picos “más alejados” de la media de 200 que son <<buenos aciertos>>.

Extra!: publica tu modelo con Flask

Ahora está disponible un nuevo artículo “Tu propio Servicio de Machine Learning” en el cual se toma el modelo de embeddings tratado aqui y se publica mediante una API creada con Flask. Te recomiendo que lo leas y así publicas tu modelo online!

Conclusiones

Como primer conclusión podemos decir que mejoran las predicciones al agregar más variables de entrada a la red. Realmente notamos mejoría con nuestro modelo 3 al usar Embeddings en la red neuronal.

NOTA 1: recordemos que hay muchos de los parámetros para “tunear” que hemos fijado arbitrariamente. Al igual que en artículo anterior, animo al lector a variar esos parámetros en los 3 modelos para mejorarlos, empezando por la cantidad de EPOCHS=40 (aumentar a 100), ó la variable de PASOS que está en 7 (probar con 4 ó con 10).

NOTA 2: en el modelo de múltiples variables “hicimos un truco” tomando como variable adicional la fecha, pero realmente estaría bien tener otras variables con datos útiles como en el ejemplo de pronóstico del clima: 3 variables con temperatura, presión y humedad.

Podemos ver cómo el Machine Learning, puede a partir de relativamente pocos datos, sacar de su galera nuevas herramientas y adaptar y mejorar el modelo. En este caso, sabemos que podemos utilizar las variables categóricas a través de Embeddings y mejorar sustancialmente los resultados obtenidos.

Te recomiendo leer “Interpretación de Modelos de Machine Learning”, pues se comentan diversas herramientas que te ayudarán a seleccionar y valorar la características más importantes que uses en tus modelos.

Suscripción al Blog – recibe nuevos artículos

Recibe antes que nadie los nuevos artículos sobre Machine Learning, redes neuronales y todo el código Python en tu casilla de correo.

NOTA: algunos usuarios reportaron que el email de confirmación a la suscripción entraron en la carpeta SPAM. Te sugiero que revises y recomiendo agregar el remitente a tus contactos. Gracias!

Recursos del Artículo y Enlaces

Otros Artículos recomendados (en inglés)

The post Pronóstico de Ventas con Redes Neuronales – Parte 2 first appeared on Aprende Machine Learning.

]]>
https://aprendemachinelearning.com/pronostico-de-ventas-redes-neuronales-python-embeddings/feed/ 24 6692
Pronóstico de Series Temporales con Redes Neuronales en Python https://aprendemachinelearning.com/pronostico-de-series-temporales-con-redes-neuronales-en-python/ https://aprendemachinelearning.com/pronostico-de-series-temporales-con-redes-neuronales-en-python/#comments Tue, 26 Feb 2019 10:00:00 +0000 https://www.aprendemachinelearning.com/?p=6622 En el artículo de hoy veremos qué son las series temporales y cómo predecir su comportamiento utilizando redes neuronales con Keras y Tensorflow. Repasaremos el código completo en Python y la descarga del archivo csv del ejercicio propuesto con los datos de entrada. ¿Qué es una serie temporal y qué tiene de especial? Una serie […]

The post Pronóstico de Series Temporales con Redes Neuronales en Python first appeared on Aprende Machine Learning.

]]>
En el artículo de hoy veremos qué son las series temporales y cómo predecir su comportamiento utilizando redes neuronales con Keras y Tensorflow. Repasaremos el código completo en Python y la descarga del archivo csv del ejercicio propuesto con los datos de entrada.

¿Qué es una serie temporal y qué tiene de especial?

Una serie temporal es un conjunto de muestras tomadas a intervalos de tiempo regulares. Es interesante analizar su comportamiento al mediano y largo plazo, intentando detectar patrones y poder hacer pronósticos de cómo será su comportamiento futuro. Lo que hace <<especial>> a una Time Series a diferencia de un “problema” de Regresión son dos cosas:

  1. Es dependiente del Tiempo. Esto rompe con el requerimiento que tiene la regresión lineal de que sus observaciones sean independientes.
  2. Suelen tener algún tipo de estacionalidad, ó de tendencias a crecer ó decrecer. Pensemos en cuánto más producto vende una heladería en sólo 4 meses al año que en el resto de estaciones.

Ejemplo de series temporales son:

  • Capturar la temperatura, humedad y presión de una zona a intervalos de 15 minutos.
  • Valor de las acciones de una empresa en la bolsa minuto a minuto.
  • Ventas diarias (ó mensuales) de una empresa.
  • Producción en Kg de una cosecha cada semestre.

Creo que con eso ya se dan una idea 🙂 Como también pueden entrever, las series temporales pueden ser de 1 sóla variable, ó de múltiples.

Vamos a comenzar con la práctica, cargando un dataset que contiene información de casi 2 años de ventas diarias de productos. Los campos que contiene son fecha y la cantidad de unidades vendidas.

Requerimientos para el Ejercicio

Como siempre, para poder realizar las prácticas, les recomiendo tener instalado un entorno Python 3.6 como el de Anaconda que ya nos provee las Jupyter Notebooks como se explica en este artículo. También se puede ejecutar en línea de comandos sin problemas. Este ejercicio además requiere tener instalado Keras y Tensorflow (u otro similar), como se explica en el artículo antes mencionado.

Al final del texto entontrarás enlaces al GitHub con la Notebook y el enlace de descarga del archivo csv del ejemplo.

Cargar el Ejemplo con librería Pandas

Aprovecharemos las bondades de Pandas para cargar y tratar nuestros datos. Comenzamos importando las librerías que utilizaremos y leyendo el archivo csv.

import pandas as pd
import numpy as np
import matplotlib.pylab as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = (16, 9)
plt.style.use('fast')

from keras.models import Sequential
from keras.layers import Dense,Activation,Flatten
from sklearn.preprocessing import MinMaxScaler

df = pd.read_csv('time_series.csv',  parse_dates=[0], header=None,index_col=0, squeeze=True,names=['fecha','unidades'])
df.head()

fecha
2017-01-02 236
2017-01-03 237
2017-01-04 290
2017-01-05 221
2017-01-07 128
Name: unidades, dtype: int64

Notemos una cosa antes de seguir: el dataframe que cargamos con pandas tiene como Indice nuestra primera columna con las fechas. Esto es para que nos permita hacer filtrados por fecha directamente y algunas operaciones especiales.

Por ejemplo, podemos ver de qué fechas tenemos datos con:

print(df.index.min())
print(df.index.max())

2017-01-02 00:00:00
2018-11-30 00:00:00

Presumiblemente tenemos las ventas diarias de 2017 y de 2018 hasta el mes de noviembre. Y ahora veamos cuantas muestras tenemos de cada año:

print(len(df['2017']))
print(len(df['2018']))

315
289

Como este comercio cierra los domingos, vemos que de 2017 no tenemos 365 días como erróneamente podíamos presuponer. Y en 2018 nos falta el último mes… que será lo que trataremos de pronosticar.

Visualización de datos

Veamos algunas gráficas sobre los datos que tenemos. Pero antes… aprovechemos los datos estadísticos que nos brinda pandas con describe()

df.describe()

count 604.000000
mean 215.935430
std 75.050304
min 51.000000
25% 171.000000
50% 214.000000
75% 261.250000
max 591.000000
Name: unidades, dtype: float64

Son un total de 604 registros, la media de venta de unidades es de 215 y un desvío de 75, es decir que por lo general estaremos entre 140 y 290 unidades.

De hecho aprovechemos el tener indice de fechas con pandas y saquemos los promedios mensuales:

meses =df.resample('M').mean()
meses

fecha
2017-01-31 203.923077
2017-02-28 184.666667
2017-03-31 182.964286
2017-04-30 198.960000
2017-05-31 201.185185
2017-06-30 209.518519
2017-07-31 278.923077
2017-08-31 316.000000
2017-09-30 222.925926
2017-10-31 207.851852
2017-11-30 185.925926
2017-12-31 213.200000
2018-01-31 201.384615
2018-02-28 190.625000
2018-03-31 174.846154
2018-04-30 186.000000
2018-05-31 190.666667
2018-06-30 196.037037
2018-07-31 289.500000
2018-08-31 309.038462
2018-09-30 230.518519
2018-10-31 209.444444
2018-11-30 184.481481
Freq: M, Name: unidades, dtype: float64

Y visualicemos esas medias mensuales:

plt.plot(meses['2017'].values)
plt.plot(meses['2018'].values)

Vemos que en 2017 (en azul) tenemos un inicio de año con un descenso en la cantidad de unidades, luego comienza a subir hasta la llegada del verano europeo en donde en los meses junio y julio tenemos la mayor cantidad de ventas. Finalmente vuelve a disminuir y tiene un pequeño pico en diciembre con la Navidad.

También vemos que 2018 (naranja) se comporta prácticamente igual. Es decir que pareciera que tenemos una estacionalidad. Por ejemplo podríamos aventurarnos a pronosticar que “el verano de 2019 también tendrá un pico de ventas”.

Veamos la gráfica de ventas diarias (en unidades) en junio y julio

verano2017 = df['2017-06-01':'2017-09-01']
plt.plot(verano2017.values)
verano2018 = df['2018-06-01':'2018-09-01']
plt.plot(verano2018.values)

¿Cómo hacer pronóstico de series temporales?

Una vez que tenemos confirmado que nuestra serie es estacionaria, podemos hacer pronóstico. Existen diversos métodos para hacer pronóstico. En nuestro caso, las ventas parecen comportarse bastante parecidas al año, con lo cual un método sencillo si por ejemplo quisiéramos proveer el stock que necesitaría este comercio, sería decir “Si en 2017 en diciembre vendimos promedio 213 unidades, pronostico que en diciembre será similar”. Otro método muy utilizado en estadística es el llamado ARIMA, el cual no explicaré aquí, pero les dejo un enlace por si están interesados. Aquí un gráfica que encontré en Twitter sobre la evolución del Forecasting:

Pues nosotros que somos unos alumnos tan avanzados y aplicados utilizaremos Machine Learning: una red neuronal para hacer el pronóstico. Curiosamente crear esta red es algo relativamente sencillo, y en poco tiempo estaremos usando un modelo de lo más moderno para hacer el pronóstico.

Pronóstico de Ventas Diarias con Redes Neuronal

Usaremos una arquitectura sencilla de red neuronal FeedForward (también llamada MLP por sus siglas Multi-Layered Perceptron), con pocas neuronas y como método de activación tangente hiperbólica pues entregaremos valores transformados entre -1 y 1.

Si aún no manejas del todo bien redes Neuronales, te recomiendo repasar rápidamente estos artículos y luego continuar con el ejercicio:

Vamos al ejemplo!

Preparamos los datos

Este puede que sea uno de los pasos más importantes de este ejercicio.

Lo que haremos es alterar nuestro flujo de entrada del archivo csv que contiene una columna con las unidades despachadas, y lo convertiremos en varias columnas. ¿Y porqué hacer esto? En realidad lo que haremos es tomar nuestra serie temporal y la convertiremos en un “problema de tipo supervisado para poder alimentar nuestra red neuronal y poder entrenarla con backpropagation (“como es habitual”). Para hacerlo, debemos tener unas entradas y unas salidas para entrenar al modelo.

Lo que haremos -en este ejemplo- es tomar los 7 días previos para “obtener” el octavo. Podríamos intentar entrenar a la red con 2, ó 3 días. O también podríamos tener 1 sola salida, ó hasta “atrevernos” intentar predecir más de un “día futuro”. Eso lo dejo a ustedes cómo actividad extra. Pero entonces quedémonos con que:

  • Entradas: serán “7 columnas” que representan las ventas en unidades de los 7 días anteriores.
  • Salida: El valor del “8vo día”. Es decir, las ventas (en unids) de ese día.

Para hacer esta transformación usaré una función llamada series_to_supervised() creada y explicada en este blog. (La verás en el código, a continuación)

Antes de usar la función, utilizamos el MinMaxScaler para transformar el rango de nuestros valores entre -1 y 1 (pues sabemos que a nuestra red neuronal, le favorece para realizar los cálculos).

Entonces aqui vemos cómo queda nuestro set de datos de entrada.

PASOS=7

# convert series to supervised learning
def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):
    n_vars = 1 if type(data) is list else data.shape[1]
    df = pd.DataFrame(data)
    cols, names = list(), list()
    # input sequence (t-n, ... t-1)
    for i in range(n_in, 0, -1):
        cols.append(df.shift(i))
        names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]
    # forecast sequence (t, t+1, ... t+n)
    for i in range(0, n_out):
        cols.append(df.shift(-i))
        if i == 0:
            names += [('var%d(t)' % (j+1)) for j in range(n_vars)]
        else:
            names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]
    # put it all together
    agg = pd.concat(cols, axis=1)
    agg.columns = names
    # drop rows with NaN values
    if dropnan:
        agg.dropna(inplace=True)
    return agg
 
# load dataset
values = df.values
# ensure all data is float
values = values.astype('float32')
# normalize features
scaler = MinMaxScaler(feature_range=(-1, 1))
values=values.reshape(-1, 1) # esto lo hacemos porque tenemos 1 sola dimension
scaled = scaler.fit_transform(values)
# frame as supervised learning
reframed = series_to_supervised(scaled, PASOS, 1)
reframed.head()

Usaremos como entradas las columnas encabezadas como var1(t-7) a (t-1) y nuestra salida (lo que sería el valor “Y” de la función) será el var1(t) -la última columna-.

¿Dudas sobre los conjuntos de Train, Test y Validación? Lee este artículo

Creamos la Red Neuronal Artificial

Antes de crear la red neuronal, subdividiremos nuestro conjunto de datos en train y en test. ATENCIÓN, algo importante de este procedimiento, a diferencia de en otros problemas en los que podemos “mezclar” los datos de entrada, es que en este caso nos importa mantener el orden en el que alimentaremos la red. Por lo tanto, haremos una subdivisión de los primeros 567 días consecutivos para entrenamiento de la red y los siguientes 30 para su validación. Esta es una proporción que elegí yo, y que me pareció conveniente, pero definitivamente, puede no ser la óptima (queda propuesto al lector, variar esta proporción por ejemplo a 80-20 y comparar resultados )

# split into train and test sets
values = reframed.values
n_train_days = 315+289 - (30+PASOS)
train = values[:n_train_days, :]
test = values[n_train_days:, :]
# split into input and outputs
x_train, y_train = train[:, :-1], train[:, -1]
x_val, y_val = test[:, :-1], test[:, -1]
# reshape input to be 3D [samples, timesteps, features]
x_train = x_train.reshape((x_train.shape[0], 1, x_train.shape[1]))
x_val = x_val.reshape((x_val.shape[0], 1, x_val.shape[1]))
print(x_train.shape, y_train.shape, x_val.shape, y_val.shape)

(567, 1, 7) (567,) (30, 1, 7) (30,)

Hemos transformado la entrada en un arreglo con forma (567,1,7) esto al castellano significa algo así como “567 entradas con vectores de 1×7”.

La arquitectura de la red neuronal será:

  • Entrada 7 inputs, como dijimos antes
  • 1 capa oculta con 7 neuronas (este valor lo escogí yo, pero se puede variar)
  • La salida será 1 sola neurona
  • Como función de activación utilizamos tangente hiperbólica puesto que utilizaremos valores entre -1 y 1.
  • Utilizaremos como optimizador Adam y métrica de pérdida (loss) Mean Absolute Error
  • Como la predicción será un valor continuo y no discreto, para calcular el Acuracy utilizaremos Mean Squared Error y para saber si mejora con el entrenamiento se debería ir reduciendo con las EPOCHS.
def crear_modeloFF():
    model = Sequential() 
    model.add(Dense(PASOS, input_shape=(1,PASOS),activation='tanh'))
    model.add(Flatten())
    model.add(Dense(1, activation='tanh'))
    model.compile(loss='mean_absolute_error',optimizer='Adam',metrics=["mse"])
    model.summary()
    return model

Entrenamiento y Resultados

Veamos cómo se comporta nuestra máquina al cabo de 40 épocas.

EPOCHS=40

model = crear_modeloFF()

history=model.fit(x_train,y_train,epochs=EPOCHS,validation_data=(x_val,y_val),batch_size=PASOS)

En pocos segundos vemos una reducción del valor de pérdida tanto del set de entrenamiento como del de validación.

Epoch 40/40
567/567 [==============================] – 0s 554us/step – loss: 0.1692 – mean_squared_error: 0.0551 – val_loss: 0.1383 – val_mean_squared_error: 0.03

Visualizamos al conjunto de validación (recordemos que eran 30 días)

results=model.predict(x_val)
plt.scatter(range(len(y_val)),y_val,c='g')
plt.scatter(range(len(results)),results,c='r')
plt.title('validate')
plt.show()
En la gráfica vemos que los puntitos verdes intentan aproximarse a los rojos. Cuanto más cerca ó superpuestos mejor. TIP: Si aumentamos la cantidad de EPOCHS mejora cada vez más.

Veamos y comparemos también cómo disminuye el LOSS tanto en el conjunto de train como el de Validate, esto es bueno ya que indica que el modelo está aprendiendo. A su vez pareciera no haber overfitting, pues las curvas de train y validate son distintas.

Pronóstico de ventas futuras

Ahora que tenemos nuestra red y -suponiendo que realizamos los 7 pasos del ML– la damos por buena, probaremos a realizar una nueva predicción, en este caso, usaremos los últimos días de noviembre 2018 para calcular la primer semana de diciembre. Veamos:

ultimosDias = df['2018-11-16':'2018-11-30']
ultimosDias

fecha
2018-11-16 152
2018-11-17 111
2018-11-19 207
2018-11-20 206
2018-11-21 183
2018-11-22 200
2018-11-23 187
2018-11-24 189
2018-11-25 76
2018-11-26 276
2018-11-27 220
2018-11-28 183
2018-11-29 251
2018-11-30 189
Name: unidades, dtype: int64

Y ahora seguiremos el mismo preprocesado de datos que hicimos para el entrenamiento: escalando los valores, llamando a la función series_to_supervised pero esta vez sin incluir la columna de salida “Y” pues es la que queremos hallar. Por eso, verán en el código que hacemos drop() de la última columna.

values = ultimosDias.values
values = values.astype('float32')
# normalize features
values=values.reshape(-1, 1) # esto lo hacemos porque tenemos 1 sola dimension
scaled = scaler.fit_transform(values)
reframed = series_to_supervised(scaled, PASOS, 1)
reframed.drop(reframed.columns[[7]], axis=1, inplace=True)
reframed.head(7)

De este conjunto “ultimosDias” tomamos sólo la última fila, pues es la que correspondería a la última semana de noviembre y la dejamos en el formato correcto para la red neuronal con reshape:

values = reframed.values
x_test = values[6:, :]
x_test = x_test.reshape((x_test.shape[0], 1, x_test.shape[1]))
x_test

array([[[ 0.11000001, 0.13 , -1. , 1. ,
0.44000006, 0.06999993, 0.75 ]]], dtype=float32)

Ahora crearemos una función para ir “rellenando” el desplazamiento que hacemos por cada predicción. Esto es porque queremos predecir los 7 primeros días de diciembre. Entonces para el 1 de diciembre, ya tenemos el set con los últimos 7 días de noviembre. Pero para pronosticar el 2 de diciembre necesitamos los 7 días anteriores que INCLUYEN al 1 de diciembre y ese valor, lo obtenemos en nuestra predicción anterior. Y así hasta el 7 de diciembre.

def agregarNuevoValor(x_test,nuevoValor):
    for i in range(x_test.shape[2]-1):
        x_test[0][0][i] = x_test[0][0][i+1]
    x_test[0][0][x_test.shape[2]-1]=nuevoValor
    return x_test

results=[]
for i in range(7):
    parcial=model.predict(x_test)
    results.append(parcial[0])
    print(x_test)
    x_test=agregarNuevoValor(x_test,parcial[0])

Ya casi lo tenemos… Ahora las predicciones están en el dominio del -1 al 1 y nosotros lo queremos en nuestra escala “real” de unidades vendidas. Entonces vamos a “re-transformar” los datos con el objeto “scaler” que creamos antes.

adimen = [x for x in results]    
inverted = scaler.inverse_transform(adimen)
inverted

array([[174.48904094],
[141.26934129],
[225.49292353],
[203.73262324],
[177.30941712],
[208.1552254 ],
[175.23698644]])

Ya podemos crear un nuevo DataFrame Pandas por si quisiéramos guardar un nuevo csv con el pronóstico. Y lo visualizamos.

prediccion1SemanaDiciembre = pd.DataFrame(inverted)
prediccion1SemanaDiciembre.columns = ['pronostico']
prediccion1SemanaDiciembre.plot()
prediccion1SemanaDiciembre.to_csv('pronostico.csv')
A partir de los últimos 7 días de noviembre 2018 y utilizando nuestra red neuronal, hicimos el siguiente pronóstico de venta de unidades para la primer semana de diciembre.

No te pierdas la Segunda Parte de este artículo sobre Pronóstico de Series Temporales con Redes Neuronales en Python: Multiples Variables y Embeddings

Conclusiones y propuesta al lector

Durante este nuevo capítulo del aprendizaje automático, diferenciamos lo que son las Series Temporales y su predicción de los problemas de Regresión. Aprovechamos la capacidad de las redes neuronales de generalizar y lograr predecir ventas futuras. Uno de los pasos más importantes, al realizar el pre procesado, consiste en convertir nuestra serie en un modelo de aprendizaje supervisado, donde tenemos valores de entrada y salida, para poder entrenar la red. Y finalizamos realizando pronóstico de una semana utilizando la red neuronal creada.

Propongo al lector hacer diversas pruebas para mejorar las predicciones, alterando parámetros del ejercicio:

  • Variar la cantidad de EPOCHS
  • Probar otro optimizador distinto a Adam, ó configurar valores distintos de Learning Rate.
  • Cambiar la arquitectura de la Red Neuronal:
    • Cambiar la cantidad de Neuronas de la capa oculta.
    • Agregar más capas ocultas
  • Probar utilizando más de 7 días previos para predecir. O probar con menos días.
  • Se puede probar de intentar predecir más de 1 día por vez (sin iterar el resultado como hice con la función agregarNuevoValor() )

En el próximo artículo (YA DISPONIBLE) retoma este ejercicio pero aplicando Embeddings que puede mejorar la precisión de las predicciones poniendo en juego el día de la semana y mes que estamos pronosticando, considerándolos como datos adicionales de entrada a la red neuronal para preservar mejor la estacionalidad.

NOTA 1: recordemos que el futuro es IMPREDECIBLE… por lo que debo decir al Científico de datos: cuidado sobre todo si debemos predecir resultados de series con comportamiento errático, como los valores de la bolsa! y también cautela en asuntos sensibles sobretodo relacionados con la salud.

NOTA 2: Debo confesar que inicialmente implementé el ejercicio utilizando Redes Neuronales Recurrentes, de tipo LSTM pero obtuve pésimos resultados… encontré mucho mejor performante a nuestras queridas “redes neuronales tradicionales” MLP.

Unete al Blog y Recibe el próximo artículo!

Recibe los nuevos artículos sobre Machine Learning, redes neuronales y todo el código Python en tu casilla de correo!

NOTA: muchos usuarios reportaron que el email de confirmación y/o posteriores a la suscripción entraron en su carpeta de SPAM. Te sugiero que revises y recomiendo que agregues nuestro remitente a tus contactos para evitar problemas. Gracias!

Recursos del Artículo y Enlaces

Artículos recomendados en Inglés (I’m sorry)

The post Pronóstico de Series Temporales con Redes Neuronales en Python first appeared on Aprende Machine Learning.

]]>
https://aprendemachinelearning.com/pronostico-de-series-temporales-con-redes-neuronales-en-python/feed/ 48 6622
¿Cómo funcionan las Convolutional Neural Networks? Visión por Ordenador https://aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/ https://aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/#comments Thu, 29 Nov 2018 09:00:00 +0000 https://www.aprendemachinelearning.com/?p=6209 En este artículo intentaré explicar la teoría relativa a las Redes Neuronales Convolucionales (en inglés CNN) que son el algoritmo utilizado en Aprendizaje Automático para dar la capacidad de “ver” al ordenador. Gracias a esto, desde apenas 1998, podemos clasificar imágenes, detectar diversos tipos de tumores automáticamente, enseñar a conducir a los coches autónomos y […]

The post ¿Cómo funcionan las Convolutional Neural Networks? Visión por Ordenador first appeared on Aprende Machine Learning.

]]>
En este artículo intentaré explicar la teoría relativa a las Redes Neuronales Convolucionales (en inglés CNN) que son el algoritmo utilizado en Aprendizaje Automático para dar la capacidad de “ver” al ordenador. Gracias a esto, desde apenas 1998, podemos clasificar imágenes, detectar diversos tipos de tumores automáticamente, enseñar a conducir a los coches autónomos y un sinfín de otras aplicaciones.

El tema es bastante complejo/complicado e intentaré explicarlo lo más claro posible. En este artículo doy por sentado que tienes conocimientos básicos de cómo funciona una red neuronal artificial multicapa feedforward (fully connected). Si no es así te recomiendo que antes leas sobre ello:

¿Qúe es una CNN? ¿Cómo puede ver una red neuronal? ¿Cómo clasifica imagenes y distingue un perro de un gato?

La CNN es un tipo de Red Neuronal Artificial con aprendizaje supervisado que procesa sus capas imitando al cortex visual del ojo humano para identificar distintas características en las entradas que en definitiva hacen que pueda identificar objetos y “ver”. Para ello, la CNN contiene varias capas ocultas especializadas y con una jerarquía: esto quiere decir que las primeras capas pueden detectar lineas, curvas y se van especializando hasta llegar a capas más profundas que reconocen formas complejas como un rostro o la silueta de un animal.

Necesitaremos…

Recodemos que la red neuronal deberá aprender por sí sola a reconocer una diversidad de objetos dentro de imágenes y para ello necesitaremos una gran cantidad de imágenes -lease más de 10.000 imágenes de gatos, otras 10.000 de perros,…- para que la red pueda captar sus características únicas -de cada objeto- y a su vez, poder generalizarlo -esto es que pueda reconocer como gato tanto a un felino negro, uno blanco, un gato de frente, un gato de perfil, gato saltando, etc.-

Pixeles y neuronas

Para comenzar, la red toma como entrada los pixeles de una imagen. Si tenemos una imagen con apenas 28×28 pixeles de alto y ancho, eso equivale a  784 neuronas. Y eso es si sólo tenemos 1 color (escala de grises). Si tuviéramos una imagen a color, necesitaríamos 3 canales (red, green, blue) y entonces usaríamos 28x28x3 = 2352 neuronas de entrada. Esa es nuestra capa de entrada. Para continuar con el ejemplo, supondremos que utilizamos la imagen con 1 sólo color.

No Olvides: Pre-procesamiento

Antes de alimentar la red, recuerda que como entrada nos conviene normalizar los valores. Los colores de los pixeles tienen valores que van de 0 a 255, haremos una transformación de cada pixel: “valor/255” y nos quedará siempre un valor entre 0 y 1.

Convoluciones

Ahora comienza el “procesado distintivo” de las CNN. Es decir, haremos las llamadas “convoluciones”: Estas consisten en tomar “grupos de pixeles cercanos” de la imagen de entrada e ir operando matemáticamente (producto escalar) contra una pequeña matriz que se llama kernel. Ese kernel supongamos de tamaño 3×3 pixels “recorre” todas las neuronas de entrada (de izquierda-derecha, de arriba-abajo) y genera una nueva matriz de salida, que en definitiva será nuestra nueva capa de neuronas ocultas. NOTA: si la imagen fuera a color, el kernel realmente sería de 3x3x3 es decir: un filtro con 3 kernels de 3×3; luego  esos 3 filtros se suman (y se le suma una unidad bias) y conformarán 1 salida (cómo si fuera 1 solo canal).

El kernel tomará inicialmente valores aleatorios(1) y se irán ajustando mediante backpropagation. (1)Una mejora es hacer que siga una distribución normal siguiendo simetrías, pero sus valores son aleatorios.

Filtro: conjunto de kernels

UN DETALLE: en realidad, no aplicaremos 1 sólo kernel, si no que tendremos muchos kernel (su conjunto se llama filtros). Por ejemplo en esta primer convolución podríamos tener 32 filtros, con lo cual realmente obtendremos 32 matrices de salida (este conjunto se conoce como “feature mapping”), cada una de 28x28x1 dando un total del 25.088 neuronas para nuestra PRIMER CAPA OCULTA de neuronas. ¿No les parecen muchas para una imagen cuadrada de apenas 28 pixeles? Imaginen cuántas más serían si tomáramos una imagen de entrada de 224x224x3 (que aún es considerado un tamaño pequeño)…

Aquí vemos al kernel realizando el producto matricial con la imagen de entrada y desplazando de a 1 pixel de izquierda a derecha y de arriba-abajo y va generando una nueva matriz que compone al mapa de features

A medida que vamos desplazando el kernel y vamos obteniendo una “nueva imagen” filtrada por el kernel. En esta primer convolución y siguiendo con el ejemplo anterior, es como si obtuviéramos 32 “imágenes filtradas nuevas”. Estas imágenes nuevas lo que están “dibujando” son ciertas características de la imagen original. Esto ayudará en el futuro a poder distinguir un objeto de otro (por ej. gato ó perro).

La imagen realiza una convolución con un kernel y aplica la función de activación, en este caso ReLu

La función de Activación

La función de activación más utilizada para este tipo de redes neuronales es la llamada ReLu por Rectifier Linear Unit  y consiste en f(x)=max(0,x).

Subsampling

Ahora viene un paso en el que reduciremos la cantidad de neuronas antes de hacer una nueva convolución. ¿Por qué? Como vimos, a partir de nuestra imagen blanco y negro de 28x28px tenemos una primer capa de entrada de 784 neuronas y luego de la primer convolución obtenemos una capa oculta de 25.088 neuronas -que realmente son nuestros 32 mapas de características de 28×28-

Si hiciéramos una nueva convolución a partir de esta capa, el número de neuronas de la próxima capa se iría por las nubes (y ello implica mayor procesamiento)! Para reducir el tamaño de la próxima capa de neuronas haremos un proceso de subsampling en el que reduciremos el tamaño de nuestras imágenes filtradas pero en donde deberán prevalecer las características más importantes que detectó cada filtro. Hay diversos tipos de subsampling, yo comentaré el “más usado”: Max-Pooling

Subsampling con Max-Pooling

Vamos a intentar explicarlo con un ejemplo: supongamos que haremos Max-pooling de tamaño 2×2. Esto quiere decir que recorreremos cada una de nuestras 32 imágenes de características obtenidas anteriormente de 28x28px de izquierda-derecha, arriba-abajo PERO en vez de tomar de a 1 pixel, tomaremos de “2×2” (2 de alto por 2 de ancho = 4 pixeles) e iremos preservando el valor “más alto” de entre esos 4 pixeles (por eso lo de “Max”). En este caso, usando 2×2, la imagen resultante es reducida “a la mitad”y quedará de 14×14 pixeles. Luego de este proceso de subsamplig nos quedarán  32 imágenes de 14×14, pasando de haber tenido 25.088 neuronas a  6272, son bastantes menos y -en teoría- siguen almacenando la información más importante para detectar características deseadas.

¿Ya terminamos? NO: ahora más convoluciones!!

Muy bien, pues esa ha sido una primer convolución: consiste de una entrada, un conjunto de filtros, generamos un mapa de características y hacemos un subsampling. Con lo cual, en el ejemplo de imágenes de 1 sólo color tendremos:

1)Entrada: Imagen 2)Aplico Kernel 3)Obtengo Feature Mapping 4)Aplico Max-Pooling 5)Obtengo “Salida” de la Convolución
28x28x1 32 filtros de 3×3 28x28x32 de 2×2 14x14x32

La primer convolución es capaz de detectar características primitivas como lineas ó curvas. A medida que hagamos más capas con las convoluciones, los mapas de características serán capaces de reconocer formas más complejas, y el conjunto total de capas de convoluciones podrá “ver”.

Pues ahora deberemos hacer una Segunda convolución que será:

1)Entrada: Imagen 2)Aplico Kernel 3)Obtengo Feature Mapping 4)Aplico Max-Pooling 5)Obtengo “Salida” de la Convolución
14x14x32 64 filtros de 3×3 14x14x64 de 2×2 7x7x64

La 3er convolución comenzará en tamaño 7×7 pixels y luego del max-pooling quedará en 3×3 con lo cual podríamos hacer sólo 1 convolución más. En este ejemplo empezamos con una imagen de 28x28px e hicimos 3 convoluciones. Si la imagen inicial hubiese sido mayor (de 224x224px) aún hubiéramos podido seguir haciendo convoluciones.

1)Entrada: Imagen 2)Aplico Kernel 3)Obtengo Feature Mapping 4)Aplico Max-Pooling 5)Obtengo “Salida” de la Convolución
7x7x64 128 filtros de 3×3 7x7x128 de 2×2 3x3x128

Llegamos a la última convolución y nos queda el desenlace…

Conectar con una red neuronal “tradicional”.

Para terminar, tomaremos la última capa oculta a la que hicimos subsampling, que se dice que es “tridimensional” por tomar la forma -en nuestro ejemplo- 3x3x128 (alto,ancho,mapas) y la “aplanamos”, esto es que deja de ser tridimensional, y pasa a ser una capa de neuronas “tradicionales”, de las que ya conocíamos. Por ejemplo, podríamos aplanar (y conectar) a una nueva capa oculta de 100 neuronas feedforward.

Entonces, a esta nueva capa oculta “tradicional”, le aplicamos una función llamada Softmax que conecta contra la capa de salida final que tendrá la cantidad de neuronas correspondientes con las clases que estamos clasificando. Si clasificamos perros y gatos, serán 2 neuronas. Si es el dataset Mnist numérico serán 10 neuronas de salida. Si clasificamos coches, aviones ó barcos serán 3, etc.

Las salidas al momento del entrenamiento tendrán el formato conocido como “one-hot-encoding” en el que para perros y gatos sera: [1,0] y [0,1], para coches, aviones ó barcos será [1,0,0]; [0,1,0];[0,0,1].

Y la función de Softmax se encarga de pasar a probabilidad (entre 0 y 1) a las neuronas de salida. Por ejemplo una salida [0,2 0,8] nos indica 20% probabilidades de que sea perro y 80% de que sea gato.

¿Y cómo aprendió la CNN a “ver”?: Backpropagation

El proceso es similar al de las redes tradicionales en las que tenemos una entrada y una salida esperada (por eso aprendizaje supervisado) y mediante el backpropagation mejoramos el valor de los pesos de las interconexiones entre capas de neuronas y a medida que iteramos esos pesos se ajustan hasta ser óptimos. PERO…

En el caso de la CNN, deberemos ajustar el valor de los pesos de los distintos kernels. Esto es una gran ventaja al momento del aprendizaje pues como vimos cada kernel es de un tamaño reducido, en nuestro ejemplo en la primer convolución es de tamaño de 3×3, eso son sólo 9 parámetros que debemos ajustar en 32 filtros dan un total de 288 parámetros. En comparación con los pesos entre dos capas de neuronas “tradicionales”: una de 748 y otra de  6272 en donde están TODAS interconectarlas con TODAS y eso equivaldría a tener que entrenar y ajustar más de 4,5 millones de pesos (repito: sólo para 1 capa).

Comparativa entre una red neuronal “tradicional” y una CNN

Dejaré un cuadro resumen para intentar aclarar más las diferencias entre las redes Fully connected y las Convolutional Neural Networks.

  Red “tradicional” Feedforward multicapa Red Neuronal Convolucional CNN
Datos de entrada en la Capa Inicial Las características que analizamos. Por ejemplo: ancho, alto, grosor, etc. Pixeles de una imagen. Si es color, serán 3 capas para rojo,verde,azul
Capas ocultas elegimos una cantidad de neuronas para las capas ocultas. Tenemos de tipo:
* Convolución (con un tamaño de kernel y una cantidad de filtros)
* Subsampling
Capa de Salida La cantidad de neuronas que queremos clasificar. Para “comprar” ó “alquilar” serán 2 neuronas. Debemos “aplanar” la última convolución con una (ó más) capas de neuronas ocultas “tradicionales” y hacer una salida mediante SoftMax a la capa de salida que clasifica “perro” y “gato” serán 2 neuronas.
Aprendizaje Supervisado Supervisado
Interconexiones Entre capas, todas las neuronas de una capa con la siguiente. Son muchas menos conexiones necesarias, pues realmente los pesos que ajustamos serán los de los filtros/kernels que usamos.
Significado de la cantidad de capas ocultas Realmente es algo desconocido y no representa algo en sí mismo. Las capas ocultas son mapas de detección de características de la imagen y tienen jerarquía: primeras capas detectan lineas, luego curvas y formas cada vez más elaboradas.
Backpropagation Se utiliza para ajustar los pesos de todas las interconexiones de las capas Se utiliza para ajustar los pesos de los kernels.

Arquitectura básica

Resumiendo: podemos decir que los elementos que usamos para crear CNNs son:

  • Entrada: Serán los pixeles de la imagen. Serán alto, ancho y profundidad será 1 sólo color o 3 para Red,Green,Blue.
  • Capa De Convolución: procesará la salida de neuronas que están conectadas en “regiones locales” de entrada (es decir pixeles cercanos), calculando el producto escalar entre sus pesos (valor de pixel) y una pequeña región a la que están conectados en el volumen de entrada. Aquí usaremos por ejemplo 32 filtros o la cantidad que decidamos y ese será el volumen de salida.
  • “CAPA RELU” aplicará la función de activación en los elementos de la matriz.
  • POOL ó SUBSAMPLING: Hará una reducción en las dimensiones alto y ancho, pero se mantiene la profundidad.
  • CAPA “TRADICIONAL” red de neuronas feedforward que conectará con la última capa de subsampling y finalizará con la cantidad de neuronas que queremos clasificar.

Pon en práctica YA MISMO la teoría y aprende a clasificar imágenes en Python mediante este ejercicio!!

Finalizando…

Se me quedan en el tintero muchísimas cosas más que explicar… pero creo que lo iré completando con el tiempo o crearé un nuevo artículo con mayor detalle/más técnico. Temas y definiciones como padding, stride, evitar overfitting, image-aumentation, dropout… o por nombrar algunas redes famosas ResNet, AlexNet, GoogLeNet and DenseNet, al mismísimo Yann LeCun… todo eso.. se queda fuera de este texto.

Este artículo pretende ser un punto inicial para seguir investigando y aprendiendo sobre las CNN. Al final dejo enlace a varios artículos para ampliar información sobre CNN.

También puedes pasar a un nuevo nivel y hacer Detección de Objetos en Python!

Conclusiones

Hemos visto cómo este algoritmo utiliza variantes de una red neuronal tradicional y las combina con el comportamiento biológico del ojo humano, para lograr aprender a ver. Recuerda que puedes hacer un ejercicio propuesto para clasificar más de 70.000 imágenes deportivas con Python en tu ordenador!

Suscripción al Blog

Recibe nuevos artículos sobre Machine Learning, redes neuronales y código Python cada 15 días 

Más recursos sobre CNN (en Inglés)


El libro del Blog (en desarrollo)

Puedes colaborar comprando el libro ó lo puedes descargar gratuitamente. Aún está en borrador, pero apreciaré mucho tu ayuda! Contiene Extras descargares como el “Lego Dataset” utilizado en el artículo de Detección de Objetos.

The post ¿Cómo funcionan las Convolutional Neural Networks? Visión por Ordenador first appeared on Aprende Machine Learning.

]]>
https://aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/feed/ 28 6209
Clasificación de Imágenes en Python https://aprendemachinelearning.com/clasificacion-de-imagenes-en-python/ https://aprendemachinelearning.com/clasificacion-de-imagenes-en-python/#comments Thu, 08 Nov 2018 07:30:00 +0000 https://www.aprendemachinelearning.com/?p=5910 Crearemos una Convolutional Neural Network con Keras y Tensorflow en Python para reconocimiento de Imágenes. En este artículo iremos directo al grano: veremos el código que crea la red neuronal para visión por computador. En un próximo artículo explicaré bien los conceptos utilizados, pero esta vez haremos un aprendizaje Top-down 😉 Ejercicio Propuesto: Clasificar imágenes […]

The post Clasificación de Imágenes en Python first appeared on Aprende Machine Learning.

]]>
Crearemos una Convolutional Neural Network con Keras y Tensorflow en Python para reconocimiento de Imágenes.

En este artículo iremos directo al grano: veremos el código que crea la red neuronal para visión por computador. En un próximo artículo explicaré bien los conceptos utilizados, pero esta vez haremos un aprendizaje Top-down 😉

Ejercicio Propuesto: Clasificar imágenes de deportes

Para el ejercicio se me ocurrió crear “mi propio set MNIST” con imágenes de deportes. Para ello, seleccioné los 10 deportes más populares del mundo -según la sabiduría de internet- : Fútbol, Basket, Golf, Futbol Americano, Tenis, Fórmula 1, Ciclismo, Boxeo, Beisball y Natación (enumerados sin orden particular entre ellos).

Obtuve entre 5000 y 9000 imágenes de cada deporte, a partir de videos de Youtube (usando a FFMpeg!). Las imágenes están en tamaño <<diminuto>> de 21×28 pixeles en color y son un total de 77.000. Si bien el tamaño en pixeles puede parecer pequeño ES SUFICIENTE para que nuestra red neuronal pueda distinguirlas!!! (¿increíble, no?).

Entonces el objetivo es que nuestra máquina: “red neuronal convolucional” aprenda a clasificar -por sí sóla-, dada una nueva imagen, de qué deporte se trata.

Ejemplo de imágenes de los deportes más populares del mundo

Dividiremos el set de datos en 80-20 para entrenamiento y para test. A su vez, el conjunto de entrenamiento también lo subdividiremos en otro 80-20 para Entrenamiento y Validación en cada iteración (EPOCH) de aprendizaje.

Una muestra de las imágenes del Dataset que he titulado sportsMNIST. Contiene más de 70.000 imágenes de los 10 deportes más populares del mundo.

Requerimientos para realizar el Ejercicio

Necesitaremos por supuesto tener Python 3.6 y como lo haremos en una Notebook Jupyter, recomiendo tener instalada una suite como Anaconda, que nos facilitará las tareas.

Además instalar Keras y Tensorflow como backend. Puedes seguir este artículo en donde se explica como instalar todo el ambiente de desarrollo rápidamente.

Necesitarás descargar el archivo zip con las imágenes (están comprimidas) y decomprimirlas en el mismo directorio en donde ejecutarás la Notebook con el código. Al descomprimir, se crearán 10 subdirectorios con las imágenes: uno por cada deporte

Al código Python sin más!

Por más que no entiendas del todo el código sigue adelante, intentaré explicar brevemente qué hacemos paso a paso y en un próximo artículo se explicará cada parte de las CNN (Convolutional Neural Networks). También dejaré al final varios enlaces con información adicional que te ayudarán.

Esto es lo que haremos hoy:

  1. Importar librerías
  2. Cargar las 70.000 imágenes (en memoria!)
  3. Crear dinámicamente las etiquetas de resultado.
  4. Dividir en sets de Entrenamiento, Validación y Test
    • algo de preprocesamiento de datos
  5. Crear el modelo de la CNN
  6. Ejecutar nuestra máquina de aprendizaje (Entrenar la red)
  7. Revisar los resultados obtenidos

Empecemos a programar!:

1- Importar librerías

Cargaremos las libs que utilizaremos para el ejercicio.

import numpy as np
import os
import re
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
import keras
from keras.utils import to_categorical
from keras.models import Sequential,Input,Model
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import LeakyReLU

2-Cargar las imágenes

Recuerda tener DESCOMPRIMIDAS las imágenes!!! Y ejecutar el código en el MISMO directorio donde descomprimiste el directorio llamado “sportimages” (contiene 10 subdirectorios: uno por cada deporte).

Este proceso plt.imread(filepath)  cargará a memoria en un array las 77mil imágenes, por lo que puede tomar varios minutos y consumirá algo de memoria RAM de tu ordenador.

dirname = os.path.join(os.getcwd(), 'sportimages')
imgpath = dirname + os.sep 

images = []
directories = []
dircount = []
prevRoot=''
cant=0

print("leyendo imagenes de ",imgpath)

for root, dirnames, filenames in os.walk(imgpath):
    for filename in filenames:
        if re.search("\.(jpg|jpeg|png|bmp|tiff)$", filename):
            cant=cant+1
            filepath = os.path.join(root, filename)
            image = plt.imread(filepath)
            images.append(image)
            b = "Leyendo..." + str(cant)
            print (b, end="\r")
            if prevRoot !=root:
                print(root, cant)
                prevRoot=root
                directories.append(root)
                dircount.append(cant)
                cant=0
dircount.append(cant)

dircount = dircount[1:]
dircount[0]=dircount[0]+1
print('Directorios leidos:',len(directories))
print("Imagenes en cada directorio", dircount)
print('suma Total de imagenes en subdirs:',sum(dircount))
leyendo imagenes de /Users/xxx/proyecto_python/sportimages/
Directorios leidos: 10
Imagenes en cada directorio [9769, 8823, 8937, 5172, 7533, 7752, 7617, 9348, 5053, 7124]
suma Total de imagenes en subdirs: 77128

3- Crear etiquetas y clases

Crearemos las etiquetas en labels , es decir, le daremos valores de 0 al 9 a cada deporte. Esto lo hacemos para poder usar el algoritmo supervisado e indicar que cuando cargamos una imagen de futbol en la red, ya sabemos que corresponde con la “etiqueta 6”. Y con esa información, entrada y salida esperada, la red al entrenar, ajustará los pesos de las neuronas.

Luego convertimos las etiquetas y las imágenes en numpy array con np.array()

labels=[]
indice=0
for cantidad in dircount:
    for i in range(cantidad):
        labels.append(indice)
    indice=indice+1
print("Cantidad etiquetas creadas: ",len(labels))

deportes=[]
indice=0
for directorio in directories:
    name = directorio.split(os.sep)
    print(indice , name[len(name)-1])
    deportes.append(name[len(name)-1])
    indice=indice+1

y = np.array(labels)
X = np.array(images, dtype=np.uint8) #convierto de lista a numpy

# Find the unique numbers from the train labels
classes = np.unique(y)
nClasses = len(classes)
print('Total number of outputs : ', nClasses)
print('Output classes : ', classes)
Cantidad etiquetas creadas: 77128
0 golf
1 basket
2 tenis
3 natacion
4 ciclismo
5 beisball
6 futbol
7 americano
8 f1
9 boxeo
Total number of outputs : 10
Output classes : [0 1 2 3 4 5 6 7 8 9]

4-Creamos sets de Entrenamiento y Test, Validación y Preprocesar

Nótese la “forma” (shape) de los arrays: veremos que son de 21×28 y por 3 pues el 3 se refiere a los 3 canales de colores que tiene cada imagen: RGB (red, green, blue) que tiene valores de 0 a 255.

Preprocesamos el valor de los pixeles y lo normalizamos para que tengan un valor entre 0 y 1, por eso dividimos en 255.

Ademas haremos el “One-Hot encoding” con to_categorical()  que se refiere a convertir las etiquetas (nuestras clases) por ejemplo de fútbol un 6 a una salida de tipo (0 0 0 0 0 0 1 0 0 0) Esto es porque así funcionan mejor las redes neuronales para clasificar y se corresponde con una capa de salida de la red neuronal de 10 neuronas.
NOTA: por si no lo entendiste, se pone un 1 en la “sexta posición” del array y el resto en ceros, PERO no te olvides que empieza a contar incluyendo el cero!!! por eso la “etiqueta 6” queda realmente en la séptima posición.

Por último en este bloque, subdividimos los datos en 80-20 para test y entrenamiento con train_test_split()  y nuevamente en 80-20 el de training para obtener un subconjunto de validación.

#Mezclar todo y crear los grupos de entrenamiento y testing
train_X,test_X,train_Y,test_Y = train_test_split(X,y,test_size=0.2)
print('Training data shape : ', train_X.shape, train_Y.shape)
print('Testing data shape : ', test_X.shape, test_Y.shape)

train_X = train_X.astype('float32')
test_X = test_X.astype('float32')
train_X = train_X / 255.
test_X = test_X / 255.

# Change the labels from categorical to one-hot encoding
train_Y_one_hot = to_categorical(train_Y)
test_Y_one_hot = to_categorical(test_Y)

# Display the change for category label using one-hot encoding
print('Original label:', train_Y[0])
print('After conversion to one-hot:', train_Y_one_hot[0])

train_X,valid_X,train_label,valid_label = train_test_split(train_X, train_Y_one_hot, test_size=0.2, random_state=13)

print(train_X.shape,valid_X.shape,train_label.shape,valid_label.shape)
Training data shape : (61702, 21, 28, 3) (61702,)
Testing data shape : (15426, 21, 28, 3) (15426,)
Original label: 0
After conversion to one-hot: [1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
(49361, 21, 28, 3) (12341, 21, 28, 3) (49361, 10) (12341, 10)

5 – Creamos la red (Aquí la Magia)

Ahora sí que nos apoyamos en Keras para crear la Convolutional Neural Network. En un futuro artículo explicaré mejor lo que se está haciendo. Por ahora “confíen” en mi:

  • Declaramos 3 “constantes”:
    • El valor inicial del learning rate INIT_LR
    • cantidad de epochs  y
    • tamaño batch de imágenes a procesar batch_size  (cargan en memoria).
  • Crearemos una primer capa de neuronas  “Convolucional de 2 Dimensiones” Conv2D() , donde entrarán nuestras imágenes de 21x28x3.
  • Aplicaremos 32 filtros (kernel) de tamaño 3×3 (no te preocupes si aún no entiendes esto!) que detectan ciertas características de la imagen (ejemplo: lineas verticales).
  • Utilizaremos La función LeakyReLU como activación de las neuronas.
  • Haremos un MaxPooling (de 2×2) que reduce la imagen que entra de 21×28 a la mitad,(11×14) manteniendo las características “únicas” que detectó cada kernel.
  • Para evitar el overfitting, añadimos una técnica llamada Dropout
  • “Aplanamos” Flatten()  los 32 filtros y creamos una capa de 32 neuronas “tradicionales” Dense()
  • Y finalizamos la capa de salida con 10 neuronas con activación Softmax, para que se corresponda con el “hot encoding” que hicimos antes.
  • Luego compilamos nuestra red sport_model.compile()  y le asignamos un optimizador (en este caso de llama Adagrad).
INIT_LR = 1e-3
epochs = 6
batch_size = 64

sport_model = Sequential()
sport_model.add(Conv2D(32, kernel_size=(3, 3),activation='linear',padding='same',input_shape=(21,28,3)))
sport_model.add(LeakyReLU(alpha=0.1))
sport_model.add(MaxPooling2D((2, 2),padding='same'))
sport_model.add(Dropout(0.5))

sport_model.add(Flatten())
sport_model.add(Dense(32, activation='linear'))
sport_model.add(LeakyReLU(alpha=0.1))
sport_model.add(Dropout(0.5)) 
sport_model.add(Dense(nClasses, activation='softmax'))

sport_model.summary()

sport_model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adagrad(lr=INIT_LR, decay=INIT_LR / 100),metrics=['accuracy'])

6-Entrenamos la CNN

Llegó el momento!!! con esta linea sport_model.fit()  iniciaremos el entrenamiento y validación de nuestra máquina! Pensemos que introduciremos miles de imágenes, pixeles, arrays, colores… filtros y la red se irá regulando sola, “aprendiendo” los mejores pesos para las más de 150.000 interconexiones para distinguir los 10 deportes. Esto tomará tiempo en un ordenador como mi Macbook Pro (del 2016) unos 4 minutos… puede parecer mucho o muy poco… según se lo mire. NOTA: podemos ejecutar este mismo código pero utilizando GPU (en tu ordenador o en la nube) y los mismos cálculos tomaría apenas 40 segundos.

Por último guardamos la red YA ENTRENADA sport_model.save()  en un formato de archivo h5py ya que nos permitirá poder utilizarla en el futuro SIN necesidad de volver a entrenar (y ahorrarnos los 4 minutos de impaciencia! ó incluso si contamos con GPU, ahorrarnos esa espera).

sport_train_dropout = sport_model.fit(train_X, train_label, batch_size=batch_size,epochs=epochs,verbose=1,validation_data=(valid_X, valid_label))

# guardamos la red, para reutilizarla en el futuro, sin tener que volver a entrenar
sport_model.save("sports_mnist.h5py")
Train on 49361 samples, validate on 12341 samples
Epoch 1/6
49361/49361 [==============================] – 40s 814us/step – loss: 1.5198 – acc: 0.4897 – val_loss: 1.0611 – val_acc: 0.7136
Epoch 2/6
49361/49361 [==============================] – 38s 775us/step – loss: 1.2002 – acc: 0.6063 – val_loss: 0.8987 – val_acc: 0.7717
Epoch 3/6
49361/49361 [==============================] – 43s 864us/step – loss: 1.0886 – acc: 0.6469 – val_loss: 0.8078 – val_acc: 0.7977
Epoch 4/6
49361/49361 [==============================] – 41s 832us/step – loss: 1.0166 – acc: 0.6720 – val_loss: 0.7512 – val_acc: 0.8180
Epoch 5/6
49361/49361 [==============================] – 36s 725us/step – loss: 0.9647 – acc: 0.6894 – val_loss: 0.7033 – val_acc: 0.8323
Epoch 6/6
49361/49361 [==============================] – 40s 802us/step – loss: 0.9258 – acc: 0.7032 – val_loss: 0.6717 – val_acc: 0.8379

Vemos que tras 6 iteraciones completas al set de entrenamiento, logramos un valor de precisión del 70% y en el set de validación alcanza un 83%. ¿Será esto suficiente para distinguir las imágenes deportivas?

7-Resultados obtenidos

Ya con nuestra red entrenada, es la hora de la verdad: ponerla a prueba con el set de imágenes para Test que separamos al principio y que son muestras que nunca fueron “vistas” por la máquina.

test_eval = sport_model.evaluate(test_X, test_Y_one_hot, verbose=1)

print('Test loss:', test_eval[0])
print('Test accuracy:', test_eval[1])
15426/15426 [==============================] – 5s 310us/step
Test loss: 0.6687967825782881
Test accuracy: 0.8409179307662388

En el conjunto de Testing vemos que alcanza una precisión del 84% reconociendo las imágenes de deportes. Ahora podríamos hacer un análisis más profundo, para mejorar la red, revisando los fallos que tuvimos… pero lo dejaremos para otra ocasión (BONUS: en la Jupyter Notebook verás más información con esto!) Spoiler Alert: La clase que peor detecta, son las de Fórmula 1.

Puedes probar con esta imagen de Basketball y de Fútbol a clasificarlas. En mi caso, fueron clasificadas con éxito.
En mis pruebas, a veces confundía esta imagen de Fútbol con Golf… ¿Será por el verde del campo?

Conclusiones y promesa futura!

Creamos una red neuronal “novedosa”: una red convolucional, que aplica filtros a las imágenes y es capaz de distinguir distintos deportes con un tamaño 21×28 pixels a color en tan sólo 4 minutos de entrenamiento.

Esta vez fuimos a la inversa que en otras ocasiones y antes de conocer la teoría de las redes específicas para reconocimiento de imágenes (las CNN) les he propuesto que hagamos un ejercicio práctico. Aunque pueda parecer contra-intuitivo, muchas veces este método de aprendizaje (en humanos!) funciona mejor, pues vuelve algo más dinámica la teoría. Espero que les hayan quedado algunos de los conceptos y los terminaremos de asentar en un próximo artículo (ya puedes leerlo!)

Suscripción al Blog

Recibe el próximo artículo con más teoría, prácticas y material para seguir aprendiendo Machine Learning! 

Los recursos y… Más recursos

Y mientras escribo el próximo artículo para el blog en español…

Ya disponible: ¿Qué son las Convolutional Neural Networks y cómo funcionan? La Teoría que faltaba 🙂

…les dejo varios enlaces (que seguramente utilizaré como inspiración) con más información sobre las Convolutional Neural Networks:

Y por último MIS artículos sobre Redes Neuronales (en Español! ejem-ejem!)

Otros:


El libro del Blog (en desarrollo)

Puedes colaborar comprando el libro ó lo puedes descargar gratuitamente. Aún está en borrador, pero apreciaré mucho tu ayuda! Contiene Extras descargares como el “Lego Dataset” utilizado en el artículo de Detección de Objetos.

The post Clasificación de Imágenes en Python first appeared on Aprende Machine Learning.

]]>
https://aprendemachinelearning.com/clasificacion-de-imagenes-en-python/feed/ 92 5910