evaluación | Aprende Machine Learning https://aprendemachinelearning.com en Español Mon, 22 Mar 2021 22:37:57 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 https://aprendemachinelearning.com/wp-content/uploads/2017/11/cropped-icon_red_neuronal-1-32x32.png evaluación | Aprende Machine Learning https://aprendemachinelearning.com 32 32 134671790 Qué es overfitting y underfitting y cómo solucionarlo https://aprendemachinelearning.com/que-es-overfitting-y-underfitting-y-como-solucionarlo/ https://aprendemachinelearning.com/que-es-overfitting-y-underfitting-y-como-solucionarlo/#comments Tue, 12 Dec 2017 09:00:13 +0000 https://www.aprendemachinelearning.com/?p=5259 Las principales causas al obtener malos resultados en Machine Learning son el overfitting o el underfitting de los datos. Cuando entrenamos nuestro modelo intentamos “hacer encajar” -fit en inglés- los datos de entrada entre ellos y con la salida. Tal vez se pueda traducir overfitting como “sobreajuste” y underfitting  como “subajuste” y hacen referencia al […]

The post Qué es overfitting y underfitting y cómo solucionarlo first appeared on Aprende Machine Learning.

]]>
Las principales causas al obtener malos resultados en Machine Learning son el overfitting o el underfitting de los datos. Cuando entrenamos nuestro modelo intentamos “hacer encajar” -fit en inglés- los datos de entrada entre ellos y con la salida. Tal vez se pueda traducir overfitting como “sobreajuste” y underfitting  como “subajuste” y hacen referencia al fallo de nuestro modelo al generalizar -encajar- el conocimiento que pretendemos que adquieran. Lo explicaré a continuación con un ejemplo.

Generalización del Conocimiento

Como si se tratase de un ser humano, las máquinas de aprendizaje deberán ser capaces de generalizar conceptos. Supongamos que vemos un perro Labrador por primera vez en la vida y nos dicen “eso es un perro”. Luego nos enseñan un Caniche y nos preguntan: ¿eso es un perro? Diremos “No”, pues no se parece en nada a lo que aprendimos anteriormente. Ahora imaginemos que nuestro tutor nos muestra un libro con fotos de 10 razas de perros distintas. Cuando veamos una raza de perro que desconocíamos seguramente seremos capaces de reconocer al cuadrúpedo canino al tiempo de poder discernir en que un gato no es un perro, aunque sea peludo y tenga 4 patas.

Cuando entrenamos nuestros modelos computacionales con un conjunto de datos de entrada estamos haciendo que el algoritmo sea capaz de generalizar un concepto para que al consultarle por un nuevo conjunto de  datos desconocido éste sea capaz de sintetizarlo, comprenderlo y devolvernos un resultado fiable dada su capacidad de generalización.

El problema de la Máquina al Generalizar

Si nuestros datos de entrenamiento son muy pocos nuestra máquina no será capaz de generalizar el conocimiento y estará incurriendo en underfitting. Este es el caso en el que le enseñamos sólo una raza de perros y  pretendemos que pueda reconocer a otras 10 razas de perros distintas. El algoritmo no será capaz de darnos un resultado bueno por falta de “materia prima” para hacer sólido su conocimiento. También es ejemplo de “subajuste” cuando la máquina reconoce todo lo que “ve” como un perro, tanto una foto de un gato o un coche.

Por el contrario, si entrenamos a nuestra máquina con 10 razas de perros sólo de color marrón de manera rigurosa y luego enseñamos una foto de un perro blanco, nuestro modelo no podrá reconocerlo cómo perro por no cumplir exactamente con las características que aprendió (el color forzosamente debía ser marrón). Aquí se trata de un problema de overfitting.

Tanto el problema del ajuste “por debajo” como “por encima” de los datos son malos porque no permiten que nuestra máquina generalice el conocimiento  y no nos darán buenas predicciones (o clasificación, o agrupación, etc.)

Overfitting en Machine Learning

Es muy común que al comenzar a aprender machine learning caigamos en el problema del Overfitting. Lo que ocurrirá es que nuestra máquina sólo se ajustará a aprender los casos particulares que le enseñamos y será incapaz de reconocer nuevos datos de entrada. En nuestro conjunto de datos de entrada muchas veces introducimos muestras atípicas (ó anomalas) o con “ruido/distorción” en alguna de sus dimensiones, o muestras que pueden no ser del todo representativas. Cuando “sobre-entrenamos” nuestro modelo y caemos en el overfitting, nuestro algoritmo estará considerando como válidos sólo los datos idénticos a los de nuestro conjunto de entrenamiento –incluidos sus defectos– y siendo incapaz de distinguir entradas buenas como fiables si se salen un poco de los rangos ya prestablecidos.

El equilibrio del Aprendizaje

Deberemos encontrar un punto medio en el aprendizaje de nuestro modelo en el que no estemos incurriendo en underfitting y tampoco en overfitting. A veces esto puede resultar una tarea muy difícil.

Para reconocer este problema deberemos subvididir nuestro conjunto de datos de entrada para entrenamiento en dos: uno para entrenamiento y otro para la Test que el modelo no conocerá de antemano. Esta división se suele hacer del 80% para entrenar y 20%. El conjunto de Test deberá tener muestras diversas en lo posible y una cantidad de muestras suficiente para poder comprobar los resultados una vez entrenado el modelo.

Cuando entrenamos nuestro modelo solemos parametrizar y limitar el algoritmo, por ejemplo la cantidad de iteraciones que tendrá o un valor de “tasa de aprendizaje” (learning-rate) por iteración y muchos otros. Para lograr que nuestro modelo dé buenos resultados iremos revisando y contrastando nuestro entrenamiento con el conjunto de Test y su tasa de errores, utilizando más o menos iteraciones, etc. hasta dar con buenas predicciones y sin tener los problemas de over-under-fitting.

Prevenir el Sobreajuste de datos

Para intentar que estos problemas nos afecten lo menos posible, podemos llevar a cabo diversas acciones.

  • Cantidad mínima de muestras tanto para entrenar el modelo como para validarlo.
  • Clases variadas y equilibradas en cantidad: En caso de aprendizaje supervisado y suponiendo que tenemos que clasificar diversas clases o categorías, es importante que los datos de entrenamiento estén balanceados. Supongamos que tenemos que diferenciar entre manzanas, peras y bananas, debemos tener muchas fotos de las 3 frutas y en cantidades similares.  Si tenemos muy pocas fotos de peras, esto afectará en el aprendizaje de nuestro algoritmo para identificar esa fruta.
  • Conjunto de Test de datos. Siempre subdividir nuestro conjunto de datos y mantener una porción del mismo “oculto” a nuestra máquina entrenada. Esto nos permitirá obtener una valoración de aciertos/fallos real del modelo y también nos permitirá detectar fácilmente efectos del overfitting /underfitting.
  • Parameter Tunning o Ajuste de Parámetros: deberemos experimentar sobre todo dando más/menos “tiempo/iteraciones” al entrenamiento y su aprendizaje hasta encontrar el equilibrio.
  • Cantidad excesiva de Dimensiones (features), con muchas variantes distintas, sin suficientes muestras. A veces conviene eliminar o reducir la cantidad de características que utilizaremos para entrenar el modelo. Una herramienta útil para hacerlo es PCA.
  • Quiero notar que si nuestro modelo es una red neuronal artificialdeep learning-, podemos caer en overfitting si usamos capas ocultas en exceso, ya que haríamos que el modelo memorice las posibles salidas, en vez de ser flexible y adecuar las activaciones a las entradas nuevas.

Si el modelo entrenado con el conjunto de train tiene un 90% de aciertos y con el conjunto de test tiene un porcentaje muy bajo, esto señala claramente un problema de overfitting.

Si en el conjunto de Test sólo se acierta un tipo de clase (por ejemplo “peras”) o el único resultado que se obtiene es siempre el mismo valor será que se produjo un problema de underfitting.

¿Como puedo balancear mi dataset? en este artículo te lo explico!

En Resumen

Siempre que creamos una máquina de aprendizaje deberemos tener en cuenta que pueden caer en uno de estos problemas por no poder generalizar correctamente el conocimiento. Underfitting indicará la imposibilidad de identificar o de obtener resultados correctos por carecer de suficientes muestras de entrenamiento o un entrenamiento muy pobre. Overfitting indicará un aprendizaje “excesivo” del conjunto de datos de entrenamiento haciendo que nuestro modelo únicamente pueda producir unos resultados singulares y con la imposibilidad de comprender nuevos datos de entrada.

¿Qué experiencia tienen ustedes frente a problemas de este tipo? Dejen sus comentarios y muchas gracias!

Comienza a programar en Python siguiendo los ejercicios de la Práctica – Nuevo: Regresión Lineal , k-Nearest Neighbor y una sencilla Red Neuronal

Recuerden que pueden ayudarme a difundir los artículos compartiendo el enlace en redes sociales y también están invitados a Inscribirse en el Blog para recibir las novedades cada 15 días.

Suscribe al Blog

Aprende Machine Learning te avisa del próximo artículo semanal/quincenal sobre Aprendizaje Automático. 

GuardarGuardar

GuardarGuardar

GuardarGuardarGuardarGuardar

GuardarGuardar

GuardarGuardar

GuardarGuardar

GuardarGuardar

GuardarGuardar

GuardarGuardar

The post Qué es overfitting y underfitting y cómo solucionarlo first appeared on Aprende Machine Learning.

]]>
https://aprendemachinelearning.com/que-es-overfitting-y-underfitting-y-como-solucionarlo/feed/ 25 5259
7 pasos del Machine Learning para construir tu máquina https://aprendemachinelearning.com/7-pasos-machine-learning-construir-maquina/ https://aprendemachinelearning.com/7-pasos-machine-learning-construir-maquina/#comments Mon, 11 Sep 2017 07:36:59 +0000 https://www.aprendemachinelearning.com/?p=5217 Describiré los 7 pasos genéricos que debes seguir para construir tu propia Inteligencia Artificial con Machine Learning. Paso 1: Colectar Datos Dada la problemática que deseas resolver, deberás investigar y obtener datos que utilizaras para alimentar a tu máquina. Importa mucho la calidad y cantidad de información que consigas ya que impactará directamente en lo […]

The post 7 pasos del Machine Learning para construir tu máquina first appeared on Aprende Machine Learning.

]]>
Describiré los 7 pasos genéricos que debes seguir para construir tu propia Inteligencia Artificial con Machine Learning.

Paso 1: Colectar Datos

Dada la problemática que deseas resolver, deberás investigar y obtener datos que utilizaras para alimentar a tu máquina. Importa mucho la calidad y cantidad de información que consigas ya que impactará directamente en lo bien o mal que luego funcione nuestro modelo. Puede que tengas la información en una base de datos ya existente o que la debas crear desde cero. Si es un pequeño proyecto puedes crear una planilla de cálculos que luego se exportará fácilmente como archivo csv. También es frecuente utilizar la técnica de web scraping para recopilar información de manera automática de diversas fuentes (y/o servicios rest/ APIs).

NO olvides hacer el EDA: Análisis Exploratorio de Datos

Paso 2: Preparar los datos

Es importante mezclar “las cartas” que obtengas ya que el orden en que se procesen los datos dentro de tu máquina no debe de ser determinante.
También es un buen momento para hacer visualizaciones de nuestros datos y revisar si hay correlaciones entre las distintas características (“features”, suelen ser las columnas de nuestra base datos o archivo) que obtuvimos. Habrá que hacer Selección de Características, pues las que elijamos impactarán directamente en los tiempos de ejecución y en los resultados, también podremos hacer reducción de dimensiones aplicando PCA si fuera necesario. Deberemos tener balanceada la cantidad de datos que tenemos para cada resultado(clase), para que sea representativo, ya que si no, el aprendizaje podrá ser tendencioso hacia un tipo de respuesta y cuando nuestro modelo intente generalizar el conocimiento fallará.
También deberemos separar los datos en en dos grupos: uno para entrenamiento y otro para evaluación del modelo. Podemos fraccionar aproximadamente en una proporción de 80/20 pero puede variar según el caso y el volumen de datos que tengamos.
En esta etapa también podemos preprocesar nuestros datos normalizando, eliminar duplicados y hacer corrección de errores.

Paso 3: Elegir el modelo

Existen diversos modelos que podemos elegir de acuerdo al objetivo que tengamos: utilizaremos algoritmos de clasificación, predicción, regresión linealclustering (ejemplo k-means ó k-nearest neighbor),  Deep Learning (ej: red neuronal), bayesiano, etc y podrá haber variantes si lo que vamos a procesar son imágenes, sonido, texto, valores numéricos. En la siguiente tabla veremos algunos modelos y sus aplicaciones

ModeloAplicaciones (Ejemplo de uso)
Logistic RegressionPredicción de precios de inmuebles
Fully connected networksClasificación
Convolutional Neural NetworksProcesamiento de imágenes para poder encontrar gatitos en las fotos
Recurrent Neural NetworksReconocimiento de Voz
Random ForestDetección de Fraude
Reinforcement LearningEnseñarle a la máquina a jugar videojuegos y vencer!
Generative ModelsCreación de imágenes
K-meansCrear Clusters a partir de datos sin etiquetar. Segmentar audiencias o Inventarios
k-Nearest Neighborsmotores de recomendación (por similitud/cercanía)
Bayesian ClasifiersClasificación de emails: Spam o no

Aquí puedes ver más aplicaciones del ML y la diferencia entre aprendizaje supervisado y no supervisado

Paso 4 Entrenar nuestra máquina

Utilizaremos el set de datos de entrenamiento para ejecutar nuestra máquina y deberemos de ver una mejora incremental (para la predicción). Recordar inicializar los “pesos” de nuestro modelo aleatoriamente, los pesos son los valores que multiplican o afectan a las relaciones entre las entradas y las salidas, se irán ajustando automáticamente por el algoritmo seleccionado cuanto más se entrena. Revisar los resultados obtenidos y corregir (por ej. inclinación de la pendiente) y volver a iterar…

Paso 5: Evaluación

Deberemos comprobar la máquina creada contra nuestro set de datos de Evaluación que contiene entradas que el modelo desconoce y verificar la precisión de nuestro modelo ya entrenado. Si la exactitud es menor o igual al 50% ese modelo no será útil ya que sería como lanzar una moneda al aire para tomar decisiones. Si alcanzamos un 90% o más podremos tener una buena confianza en los resultados que nos otorga el modelo.

Paso 6: Parameter Tuning (configuración de parámetros)

Si durante la evaluación no obtuvimos buenas predicciones y nuestra precisión no es la mínima deseada es posible que tengamos problemas de overfitting (ó underfitting) y deberemos retornar al paso de entrenamiento (4) haciendo antes una nueva configuración de parámetros de nuestro modelo. Podemos incrementar la cantidad de veces que iteramos nuestros datos de entrenamiento (EPOCHs). Otro parámetro importante es el conocido como “Learning Rate” (taza de aprendizaje) que suele ser un valor que multiplica al gradiente para acercarlo poco a poco al mínimo global (o local) para minimizar el coste de la función. No es lo mismo incrementar nuestros valores en 0,1 unidades que de 0,001 esto puede afectar significativamente el tiempo de ejecución del modelo. Tambié se puede indicar el máximo error permitido de nuestro modelo. Podemos pasar de tardar unos minutos a horas (y días) en entrenar nuestra máquina. A estos parámetros muchas veces se les llama Hiperparámetros. Este “tuneo” sigue siendo más un arte que una ciencia y se ira mejorando a medida que experimentamos. Suele haber muchos parámetros para ir ajustando y al combinarlos se pueden disparar todas nuestras opciones. Cada algoritmo tiene sus propios parámetros a ajustar. Por nombrar alguno más, en las Redes Neuronales Artificiales deberemos definir en su arquitectura la cantidad de hidden layers que tendrá e ir probando con más o con menos y con cuantas neuronas cada capa. Este será un trabajo de gran esfuerzo y paciencia para dar con buenos resultados.

Paso 7 : Predicción o Inferencia

Ya estamos listos para utilizar nuestro modelo de Aprendizaje Automático! con nueva información y comenzar a predecir o inferir resultados “en la vida real”… Imaginemos que si este paso fuera pasar de un simulador de un coche a aplicar nuestra máquina en un coche de verdad… es un gran momento y también será un emocionante desafío poner a prueba realmente todo nuestro trabajo de… ¿meses?

BONUS: Paso 8 Interpretación del Modelo

Puedes ver ejercicios prácticos en Python y descargar el código desde la sección de Práctica del Blog
ó Instala tu ambiente de desarrollo
Nuevo artículo: ¿Cómo hacer Webscraping? un ejemplo Python

Ahora ya conoces los 7 pasos para crear tu propia máquina y conquistar el mundo 🙂

Y si quieres crear tu propia API y desplegar en un servidor, no dejes de leer este artículo

Seguir Aprendiendo

Suscribe al blog y te llegará un email cada 10 ó 15 días con mi nuevo post sobre Machine Learning. Mantén tus conocimientos frescos!! 

GuardarGuardar

GuardarGuardar

GuardarGuardar

GuardarGuardar

The post 7 pasos del Machine Learning para construir tu máquina first appeared on Aprende Machine Learning.

]]>
https://aprendemachinelearning.com/7-pasos-machine-learning-construir-maquina/feed/ 6 5217