K-Means en Python paso a paso

K-Means es un algoritmo no supervisado de Clustering. Se utiliza cuando tenemos un montón de datos sin etiquetar. El objetivo de este algoritmo es el de encontrar “K” grupos (clusters) entre los datos crudos. En este artículo repasaremos sus conceptos básicos y veremos un ejemplo paso a paso en python que podemos descargar.

Cómo funciona K-Means

El algoritmo trabaja iterativamente para asignar a cada “punto” (las filas de nuestro conjunto de entrada forman una coordenada) uno de los “K” grupos basado en sus características. Son agrupados en base a la similitud de sus features (las columnas). Como resultado de ejecutar el algoritmo tendremos:

Continue reading “K-Means en Python paso a paso”

Regresión Logística con Python paso a paso

Breve Introducción a la Regresión Logística

Utilizaremos algoritmos de Machine Learning en Python para resolver un problema de Regresión Logística. A partir de un conjunto de datos de entrada (características), nuestra salida será discreta (y no continua) por eso utilizamos Regresión Logística (y no Regresión Lineal). La Regresión Logística es un Algoritmo Supervisado y se utiliza para clasificación.

Vamos a clasificar problemas con dos posibles estados “SI/NO”: binario o un número finito de “etiquetas” o “clases”: múltiple. Algunos Ejemplos de Regresión Logística son:

Continue reading “Regresión Logística con Python paso a paso”