Qué es overfitting y underfitting y cómo solucionarlo

Las principales causas al obtener malos resultados en Machine Learning son el overfitting o el underfitting de los datos. Cuando entrenamos nuestro modelo intentamos “hacer encajar” -fit en inglés- los datos de entrada entre ellos y con la salida. Tal vez se pueda traducir overfitting como “sobreajuste” y underfitting  como “subajuste” y hacen referencia al fallo de nuestro modelo al generalizar -encajar- el conocimiento que pretendemos que adquieran. Lo explicaré a continuación con un ejemplo.

Generalización del Conocimiento

Como si se tratase de un ser humano, las máquinas de aprendizaje deberán ser capaces de generalizar conceptos. Supongamos que vemos un perro Labrador por primera vez en la vida y nos dicen “eso es un perro”. Luego nos enseñan un Caniche y nos preguntan: ¿eso es un perro? Diremos “No”, pues no se parece en nada a lo que aprendimos anteriormente. Ahora imaginemos que nuestro tutor nos muestra un libro con fotos de 10 razas de perros distintas. Cuando veamos una raza de perro que desconocíamos seguramente seremos capaces de reconocer al cuadrúpedo canino al tiempo de poder discernir en que un gato no es un perro.

Leer Artículo Completo

Regresión Logística con Python paso a paso

Breve Introducción a la Regresión Logística

Utilizaremos algoritmos de Machine Learning en Python para resolver un problema de Regresión Logística. A partir de un conjunto de datos de entrada (características), nuestra salida será discreta (y no continua) por eso utilizamos Regresión Logística (y no Regresión Lineal). La Regresión Logística es un Algoritmo Supervisado y se utiliza para clasificación.

Vamos a clasificar problemas con dos posibles estados “SI/NO”: binario o un número finito de “etiquetas” o “clases”: múltiple. Algunos Ejemplos de Regresión Logística son:

Leer Artículo Completo

Aprendizaje Profundo: una Guía rápida

Explicando Deep Learning y Redes Neuronales -sin código-

Intentaré explicar brevemente en qué consiste el Deep Learning ó Aprendizaje Profundo utilizado en Machine Learning describiendo sus componentes básicos.

Conocimientos Previos

Daré por sentado que el lector ya conoce la definición de Machine Learning y sus principales aplicaciones en el mundo real y el panorama de algoritmos utilizados con mayor frecuencia. Nos centraremos en Aprendizaje Profundo aplicando Redes Neuronales Artificiales.

Entonces, ¿cómo funciona el Deep Learning? Mejor un Ejemplo

El Aprendizaje Profundo es un método del Machine Learning que nos permite entrenar una Inteligencia Artificial para obtener una predicción dado un conjunto de entradas. Se puede utilizar Aprendizaje Supervisado o No Supervisado.

Explicaré como funciona el Deep Learning mediante un ejemplo hipotético de un servicio de predicción de quién ganará el próximo mundial de futbol. Utilizaremos aprendizaje supervisado mediante algoritmos de Redes Neuronales Artificiales.

Para lograr las predicciones de los partidos de fútbol usaremos como ejemplo las siguientes entradas:

Leer Artículo Completo

7 pasos del Machine Learning para construir tu máquina

Describiré los 7 pasos genéricos que debes seguir para construir tu propia Inteligencia Artificial con Machine Learning.

Paso 1: Colectar Datos

Dada la problemática que deseas resolver, deberás investigar y obtener datos que utilizaras para alimentar a tu máquina. Importa mucho la calidad y cantidad de información que consigas ya que impactará directamente en lo bien o mal que luego funcione nuestro modelo. Puede que tengas la información en una base de datos ya existente o que la debas crear desde cero. Si es un pequeño proyecto puedes crear una planilla de cálculos que luego se exportará fácilmente como archivo csv.

Paso 2: Preparar los datos

Es importante mezclar “las cartas” que obtengas ya que el orden en que se procesen los datos dentro de tu máquina no debe de ser determinante.
También es un buen momento para hacer visualizaciones de nuestros datos y revisar si hay correlaciones entre las distintas características (“features”, suelen ser las columnas de nuestra base datos o archivo) que obtuvimos. Deberemos tener balanceada la cantidad de datos que tenemos para cada resultado, para que sea representativo, ya que si no, el aprendizaje podrá ser tendencioso hacia un tipo de respuesta y cuando nuestro modelo intente generalizar el conocimiento fallará.
También deberemos separar los datos en en dos grupos: uno para entrenamiento y otro para evaluación del modelo. Podemos fraccionar aproximadamente en una proporción de 80/20 pero puede variar según el caso y el volumen de datos que tengamos.
En esta etapa también podemos preprocesar nuestros datos normalizando, eliminar duplicados y hacer corrección de errores.

Paso 3: Elegir el modelo

Leer Artículo Completo