Breve Historia de las Redes Neuronales Artificiales

Arquitecturas y Aplicaciones de las Redes Neuronales más usadas.

Vamos a hacer un repaso por las diversas estructuras inventadas, mejoradas y utilizadas a lo largo de la historia para crear redes neuronales y sacar el mayor potencial al Deep Learning para resolver toda clase de problemas de regresión y clasificación.

Evolución de las Redes Neuronales en Ciencias de la Computación

Vamos a revisar las siguientes redes/arquitecturas:

  • 1958 – Perceptron
  • 1965 – Multilayer Perceptron
  • 1980’s
    • Neuronas Sigmoidales
    • Redes Feedforward
    • Backpropagation
  • 1989 – Convolutional neural networks (CNN) / Recurent neural networks (RNN)
  • 1997 – Long short term memory (LSTM)
  • 2006 – Deep Belief Networks (DBN): Nace deep learning
    • Restricted Boltzmann Machine
    • Encoder / Decoder = Auto-encoder
  • 2014 – Generative Adversarial Networks (GAN)

Si bien esta lista no es exhaustiva y no se abarcan todos los modelos creados desde los años 50, he recopilado las que fueron -a mi parecer- las redes y tecnologías más importantes desarrolladas para llegar al punto en que estamos hoy: el Aprendizaje Profundo.

El inicio de todo: la neurona artificial

Seguir Leyendo

¿Comprar casa o Alquilar? Naive Bayes usando Python

Hoy veremos un nuevo ejercicio práctico, intentando llevar los algoritmos de Machine Learning a ejemplos claros y de la vida real, repasaremos la teoría del Teorema de Bayes (video) de estadística para poder tomar una decisión muy importante: ¿me conviene comprar casa ó alquilar?

Veamos si la Ciencia de Datos nos puede ayudar a resolver el misterio… ¿Si alquilo estoy tirando el dinero a la basura? ó ¿Es realmente conveniente pagar una hipoteca durante el <<resto de mi vida>>?

Si bien tocaremos el tema livianamente -sin meternos en detalles como intereses de hipotecas variable/fija, porcentajes, comisiones de bancos,etc- haremos un planteo genérico para obtener resultados y tomar la mejor decisión dada nuestra condición actual.

En artículos pasados vimos diversos algoritmos Supervisados del Aprendizaje Automático que nos dejan clasificar datos y/o obtener predicciones o asistencia a la toma de decisiones (árbol de decisión, regresión logística y lineal, red neuronal). Por lo general esos algoritmos intentan minimizar algún tipo de coste iterando las entradas y las salidas y ajustando internamente las “pendientes” ó “pesos” para hallar una salida. Esta vez, el algoritmo que usaremos se basa completamente en teoría de probabilidades  y obteniendo resultados estadísticos. ¿Será suficiente el Teorema de Bayes para obtener buenas decisiones? Veamos!

Seguir Leyendo

Clasificar con K-Nearest-Neighbor ejemplo en Python

K-Nearest-Neighbor es un algoritmo basado en instancia de tipo supervisado de Machine Learning. Puede usarse para clasificar nuevas muestras (valores discretos) o para predecir (regresión, valores continuos). Al ser un método sencillo, es ideal para introducirse en el mundo del  Aprendizaje Automático. Sirve esencialmente para clasificar valores buscando los puntos de datos “más similares” (por cercanía) aprendidos en la etapa de entrenamiento (ver 7 pasos para crear tu ML) y haciendo conjeturas de nuevos puntos basado en esa clasificación.

A diferencia de K-means, que es un algoritmo no supervisado y donde la “K” significa la cantidad de “grupos” (clusters) que deseamos clasificar, en K-Nearest Neighbor la “K” significa la cantidad de “puntos vecinos” que tenemos en cuenta en las cercanías para clasificar los “n” grupos -que ya se conocen de antemano, pues es un algoritmo supervisado-.

¿Qué es el algoritmo k-Nearest Neighbor ?

Seguir Leyendo

Arbol de Decisión en Python: Clasificación y predicción.

En este artículo describiremos rápidamente en qué consisten y cómo funcionan los árboles de decisión utilizados en Aprendizaje Automático y nos centraremos en un divertido ejemplo en Python en el que analizaremos a los cantantes y bandas que lograron un puesto número uno en las listas de Billboard Hot 100 e intentaremos predecir quién será el próximo Ed Sheeran a fuerza de Inteligencia Artificial. Realizaremos Gráficas que nos ayudarán a visualizar los datos de entrada y un grafo para interpretar el árbol que crearemos con el paquete Scikit-Learn. Comencemos!

¿Qué es un árbol de decisión?

Los arboles de decisión son representaciones gráficas de posibles soluciones a una decisión basadas en ciertas condiciones, es uno de los algoritmos de aprendizaje supervisado más utilizados en machine learning y pueden realizar tareas de clasificación o regresión (acrónimo del inglés CART). La comprensión de su funcionamiento suele ser simple y a la vez muy potente.

Utilizamos mentalmente estructuras de árbol de decisión constantemente en nuestra vida diaria sin darnos cuenta:

Seguir Leyendo

K-Means en Python paso a paso

K-Means es un algoritmo no supervisado de Clustering. Se utiliza cuando tenemos un montón de datos sin etiquetar. El objetivo de este algoritmo es el de encontrar “K” grupos (clusters) entre los datos crudos. En este artículo repasaremos sus conceptos básicos y veremos un ejemplo paso a paso en python que podemos descargar.

Cómo funciona K-Means

El algoritmo trabaja iterativamente para asignar a cada “punto” (las filas de nuestro conjunto de entrada forman una coordenada) uno de los “K” grupos basado en sus características. Son agrupados en base a la similitud de sus features (las columnas). Como resultado de ejecutar el algoritmo tendremos:

Seguir Leyendo

Qué es overfitting y underfitting y cómo solucionarlo

Las principales causas al obtener malos resultados en Machine Learning son el overfitting o el underfitting de los datos. Cuando entrenamos nuestro modelo intentamos “hacer encajar” -fit en inglés- los datos de entrada entre ellos y con la salida. Tal vez se pueda traducir overfitting como “sobreajuste” y underfitting  como “subajuste” y hacen referencia al fallo de nuestro modelo al generalizar -encajar- el conocimiento que pretendemos que adquieran. Lo explicaré a continuación con un ejemplo.

Generalización del Conocimiento

Como si se tratase de un ser humano, las máquinas de aprendizaje deberán ser capaces de generalizar conceptos. Supongamos que vemos un perro Labrador por primera vez en la vida y nos dicen “eso es un perro”. Luego nos enseñan un Caniche y nos preguntan: ¿eso es un perro? Diremos “No”, pues no se parece en nada a lo que aprendimos anteriormente. Ahora imaginemos que nuestro tutor nos muestra un libro con fotos de 10 razas de perros distintas. Cuando veamos una raza de perro que desconocíamos seguramente seremos capaces de reconocer al cuadrúpedo canino al tiempo de poder discernir en que un gato no es un perro, aunque sea peludo y tenga 4 patas.

Seguir Leyendo