Aplicaciones del Machine Learning

Para comentar las  diversas aplicaciones del ML primero vamos a diferenciar entre el Aprendizaje Supervisado y No Supervisado y el Aprendizaje por Refuerzo.

Aprendizaje Supervisado

En el Aprendizaje Supervisado los datos para el entrenamiento incluyen la solución deseada, llamada “etiquetas” (labels). Un claro ejemplo es al clasificar correo entrante entre Spam o no. Entre las diversas características que queremos entrenar deberemos incluir si es correo basura o no con un 1 o un 0. Otro ejemplo son al predecir valores numéricos por ejemplo precio de vivienda a partir de sus características (metros cuadrados, nº de habitaciones, incluye calefacción, distancia del centro, etc.) y deberemos incluir el precio que averiguamos en nuestro set de datos.

Los algoritmos más utilizados en Aprendizaje Supervisado son:

Aprendizaje No Supervisado

En el aprendizaje No Supervisado los datos de entrenamiento no incluyen Etiquetas y el algoritmo intentará clasificar o descifrar la información por sí solo. Un ejemplo en el que se usa es para agrupar la información recolectada sobre usuarios en una Web o en una app y que nuestra Inteligencia detecte diversas características que tienen en común.

Los algoritmos más importantes de Aprendizaje No supervisado son:

Aprendizaje por Refuerzo

Nuestro sistema será un “agente autónomo” que deberá explorar “un espacio” desconocido y determinar las acciones a llevar a cabo mediante prueba y error. Aprenderá por sí mismo obteniendo premios -recompensas- y penalidades la forma óptima para recorrer un camino, resolver un puzzle o comportarse por ejemplo en el Pac Man o en el Flappy Bird. Creará la mejor estrategia posible (políticas) para obtener la mayor recompensa posible en tiempo y forma. Las políticas definirán qué acciones tomar ante cada situación a la que se enfrente.

  • Procesos de Decisión de Markov (MDP: Markov Decision Process)

Aplicaciones de ML  y Ejemplos

Las aplicaciones más frecuentes del Machine Learning son:

Continue reading “Aplicaciones del Machine Learning”

¿Qué es Machine Learning? Una definición

aprendizaje automático que es

Un artículo que intentará ayudar a comprender qué es el Machine Learning o Aprendizaje Automático

A partir de mi experiencia en diversos cursos, artículos y lecturas voy a describir qué es el Machine Learning. Veremos algunas definiciones ya existentes. Este es un compilado que intentará dar mejor comprensión sobre esta revolucionaria materia.

Definiendo Machine Learning

El Machine Learning -traducido al Español como “Aprendizaje Automático”- es un subcampo de la Inteligencia Artificial que busca resolver el “cómo construir programas de computadora que mejoran automáticamente adquiriendo experiencia”.

Esta definición indica que el programa que se crea con ML no necesita que el programador indique explícitamente las reglas que debe seguir para lograr su tarea si no que este mejora automáticamente.

Grandes volúmenes de datos están surgiendo de diversas fuentes en los últimos años y el Aprendizaje Automático relacionado al campo estadístico consiste en extraer y reconocer patrones y tendencias para comprender qué nos dicen los datos. Para ello, se vale de algoritmos que pueden procesar Gygas y/o Terabytes y obtener información útil.

Una Definición Técnica

Durante mi cursada de Aprendizaje Automático en Coursera, encontré la siguiente “definición técnica”:

Continue reading “¿Qué es Machine Learning? Una definición”