12 Consejos útiles para aplicar Machine Learning

Si vas por el buen camino hacia el aprendizaje del Machine Learning, la inteligencia artificial y la ciencia de datos, seguramente te hayas topado con trabas y obstáculos frecuentes. En este artículo repasaremos 12 útiles consejos para tener en cuenta a la hora de trabajar con los modelos del Aprendizaje Automático. Estos postulados surgen del paper A Few Useful Things to Know about Machine Learning escrito en 2012 por Pedro Domingos.

No olvides seguir los 7 pasos del Machine Learning

Vamos al grano!

Con el objetivo de ilustrar mejor estos consejos, nos centraremos en la aplicación del Machine Learning de Clasificar, pero esto podría servir para otros usos.

Los 3 componentes del Aprendizaje Automático

Supongamos que tienes un problema al que crees que puedes aplicar ML. ¿Qué modelo usar? Deberá ser una combinación de estos 3 componentes: Representación, evaluación y optimización.

  • Representación: Un clasificador deberá poder ser representado en un lenguaje formal que entienda el ordenador. Deberemos elegir entre los diversos algoritmos que sirven para resolver el problema. A este conjunto de “clasificadores aptos” se les llamará “espacio de hipótesis del aprendiz”. Ej: SVM, Regresión Logística, K-nearest neighbor, árboles de decisión, Redes Neuronales, etc.
  • Evaluación: Se necesitará una función de evaluación para distinguir entre un buen clasificador ó uno malo. También es llamada función objetivo ó scoring function. Ejemplos son accuracy, likelihood, information gain, etc.
  • Optimización: necesitamos un método de búsqueda entre los clasificadores para mejorar el resultado de la Evaluación. Su elección será clave. EJ: Descenso por gradiente, mínimos cuadrados, etc.
Continuar leyendo “12 Consejos útiles para aplicar Machine Learning”

Pronóstico de Ventas con Redes Neuronales – Parte 2

Mejora del modelo de Series Temporales con Múltiples Variables y Embeddings

Este artículo es la continuación del post anterior “Pronóstico de Series Temporales con Redes Neuronales en Python” en donde vimos cómo a partir de un archivo de entrada con las unidades vendidas por una empresa durante años anteriores, podíamos estimar las ventas de la próxima semana. Continuaremos a partir de ese modelo -por lo que te recomiendo leer antes de continuar- y haremos propuestas para mejorar la predicción.

Breve Repaso de lo que hicimos

En el modelo del capitulo anterior creamos una Red Neuronal MLP (Multilayered Perceptron) feedforward de pocas capas, y el mayor trabajo que hicimos fue en los datos de entrada. Puesto que sólo tenemos un archivo csv con 2 columnas: fecha y unidades vendidas lo que hicimos fue transformar esa entrada en un “problema de aprendizaje supervisado“. Para ello, creamos un “nuevo archivo” de entrada con 7 columnas en donde poníamos la cantidad de unidades vendidas en los 7 días anteriores y de salida la cantidad de unidades vendidas en “la fecha actual”. De esa manera alimentamos la red y ésta fue capaz de realizar pronósticos aceptables. Sólo utilizamos la columna de unidades. Pero no utilizamos la columna de fecha. ¿Podría ser la columna de fecha un dato importante? ¿podría mejorar nuestra predicción de ventas?

Mejoras al modelo de Series Temporales

Esto es lo que haremos hoy: propongo 2 nuevos modelos con Redes Neuronales Feedforward para intentar mejorar los pronósticos de ventas:

  • Un primer modelo tomando la fecha como nueva variable de entrada valiosa y que aporta datos.
  • Un segundo modelo también usando la fecha como variable adicional, pero utilizándola con Embeddings… y a ver si mejora el pronóstico.

Por lo tanto explicaremos lo qué son los embeddings utilizados en variables categóricas (se utiliza mucho en problemas de Procesamiento del Lenguaje Natural NLP para modelar).

Continuar leyendo “Pronóstico de Ventas con Redes Neuronales – Parte 2”

¿Machine Learning en la Nube? Google Colaboratory con GPU!

Por increíble que parezca, ahora mismo tenemos disponible una cuenta gratuita para programar nuestros modelos de Machine Learning en la nube, con Python, Jupyter Notebooks de manera remota y hasta con GPU para poder aumentar nuestro poder de procesamiento…. gratis! sí sí… esto no es un “cuento del tío” ni tiene ninguna trampa!… Descubre cómo aprovecharlo en este artículo!

Machine Learning desde el Navegador

Primero lo primero. ¿Porqué voy a querer tener mi código en la nube? Pues bien, lo normal (¿ideal?) es que tengamos un entorno de desarrollo local en nuestro propio ordenador, un entorno de pruebas en algún servidor, staging y producción. Pero… ¿qué pasa si aún no tenemos instalado el ambiente?, o tenemos conflictos con algún archivo/librería, versión de Python… ó por lo que sea no tenemos espacio en disco… ó hasta si nos va muy lento y no disponemos en -el corto plazo- de mayor procesador/ram? O hasta por simple comodidad, está siempre bien tener a mano una web online, “siempre lista” en donde ya esté prácticamente todo el software que necesitamos instalado. Y ese servicio lo da Google, entre otras opciones. Lo interesante es que Google Colab ofrece varias ventajas frente a sus competidores.

interesante es que Google Colab ofrece varias ventajas frente a sus competidores.

La GPU…. ¿en casa o en la nube?

¿Una GPU? ¿para que quiero eso si ya tengo como 8 núcleos? La realidad es que para el procesamiento de algoritmos de Aprendizaje Automático (y para videojuegos, ejem!) la GPU resulta mucho más potente en realizar cálculos (también en paralelo) por ejemplo las multiplicaciones matriciales… esas que HACEMOS TOooooDO el tiempo al ENTRENAR nuestros modelos!!! para hacer el descenso por gradiente ó Toooodo el rato con el Backpropagation de nuestras redes neuronales… Esto supone una mejora de hasta 10x en velocidad de procesado… Algoritmos que antes tomaban días y ahora se resuelven en horas. Un avance enorme.

Si tienes una tarjeta Nvidia con GPU ya instalada, felicidades ya tienes el poder! Si no la tienes y no vas a invertir unos cuántos dólares en comprarla, puedes tener toda(*) su potencia desde la nube!

(*)NOTA: Google se reserva el poder limitar el uso de GPU si considera que estás abusando ó utilizando en demasía ese recurso ó para fines indebidos (por ej. minería de bitcoins)

Bienvenidos a Google Colaboratory

¿Qué es Google Colab?

Continuar leyendo “¿Machine Learning en la Nube? Google Colaboratory con GPU!”

Ejemplo Web Scraping en Python: IBEX35® la Bolsa de Madrid

En este artículo aprenderemos a utilizar la librería BeatifulSoap de Python para obtener contenidos de páginas webs de manera automática.

En internet encontramos de todo: artículos, noticias, estadísticas e información útil (¿e inútil?), pero ¿cómo la extraemos? No siempre se encuentra en forma de descarga ó puede haber información repartida en multiples dominios, ó puede que necesitemos información histórica, de webs que cambian con el tiempo.

Para poder generar nuestros propios archivos con los datos que nos interesan y de manera automática es que utilizaremos la técnica de WebScraping.

Contenidos:

  • Requerimientos para WebScraping
  • Lo básico de HTML y CSS que debes saber
  • Inspeccionar manualmente una página web
  • Al código! Obtener el valor actual del IBEX35® de la Bolsa de Madrid
  • Exportar a archivo csv (y poder abrir en Excel)
  • Otros casos frecuentes de “rascar la web”

Puedes ver y descargar el código python completo de este artículo desde GitHub haciendo click aquí

Continuar leyendo “Ejemplo Web Scraping en Python: IBEX35® la Bolsa de Madrid”

Procesamiento del Lenguaje Natural (NLP)

¿Qué es Natural Language Processing?

El Procesamiento del Lenguaje Natural (NLP por sus siglas en inglés) es el campo de estudio que se enfoca en la comprensión mediante ordenador del lenguaje humano. Abarca parte de la Ciencia de Datos, Inteligencia Artificial (Aprendizaje Automático) y la lingüística.

En NLP las computadoras analizan el leguaje humano, lo interpretan y dan significado para que pueda ser utilizado de manera práctica. Usando NLP podemos hacer tareas como resumen automático de textos, traducción de idiomas, extracción de relaciones, Análisis de sentimiento, reconocimiento del habla y clasificación de artículos por temáticas.

El gran desafío

Continuar leyendo “Procesamiento del Lenguaje Natural (NLP)”

¿Cómo funcionan las Convolutional Neural Networks? Visión por Ordenador

En este artículo intentaré explicar la teoría relativa a las Redes Neuronales Convolucionales (en inglés CNN) que son el algoritmo utilizado en Aprendizaje Automático para dar la capacidad de “ver” al ordenador. Gracias a esto, desde apenas 1998, podemos clasificar imágenes, detectar diversos tipos de tumores automáticamente, enseñar a conducir a los coches autónomos y un sinfín de otras aplicaciones.

El tema es bastante complejo/complicado e intentaré explicarlo lo más claro posible. En este artículo doy por sentado que tienes conocimientos básicos de cómo funciona una red neuronal artificial multicapa feedforward (fully connected). Si no es así te recomiendo que antes leas sobre ello:

¿Qúe es una CNN? ¿Cómo puede ver una red neuronal? ¿Cómo clasifica imagenes y distingue un perro de un gato?

La CNN es un tipo de Red Neuronal Artificial con aprendizaje supervisado que procesa sus capas imitando al cortex visual del ojo humano para identificar distintas características en las entradas que en definitiva hacen que pueda identificar objetos y “ver”. Para ello, la CNN contiene varias capas ocultas especializadas y con una jerarquía: esto quiere decir que las primeras capas pueden detectar lineas, curvas y se van especializando hasta llegar a capas más profundas que reconocen formas complejas como un rostro o la silueta de un animal.

Necesitaremos…

Recodemos que la red neuronal deberá aprender por sí sola a reconocer una diversidad de objetos dentro de imágenes y para ello necesitaremos una gran cantidad de imágenes -lease más de 10.000 imágenes de gatos, otras 10.000 de perros,…- para que la red pueda captar sus características únicas -de cada objeto- y a su vez, poder generalizarlo -esto es que pueda reconocer como gato tanto a un felino negro, uno blanco, un gato de frente, un gato de perfil, gato saltando, etc.-

Pixeles y neuronas

Continuar leyendo “¿Cómo funcionan las Convolutional Neural Networks? Visión por Ordenador”